"""Calculate, convert, calibrate, and reduce phasor coordinates.
The ``phasorpy.phasor`` module provides functions to:
- calculate phasor coordinates from time-resolved and spectral signals:
- :py:func:`phasor_from_signal`
- synthesize signals from phasor coordinates or lifetimes:
- :py:func:`phasor_to_signal`
- :py:func:`lifetime_to_signal`
- convert between phasor coordinates and single- or multi-component
fluorescence lifetimes:
- :py:func:`phasor_from_lifetime`
- :py:func:`phasor_from_apparent_lifetime`
- :py:func:`phasor_to_apparent_lifetime`
- convert to and from polar coordinates (phase and modulation):
- :py:func:`phasor_from_polar`
- :py:func:`phasor_to_polar`
- :py:func:`polar_from_apparent_lifetime`
- :py:func:`polar_to_apparent_lifetime`
- transform phasor coordinates:
- :py:func:`phasor_transform`
- :py:func:`phasor_multiply`
- :py:func:`phasor_divide`
- calibrate phasor coordinates with reference of known fluorescence
lifetime:
- :py:func:`phasor_calibrate`
- :py:func:`polar_from_reference`
- :py:func:`polar_from_reference_phasor`
- reduce dimensionality of arrays of phasor coordinates:
- :py:func:`phasor_center`
- :py:func:`phasor_to_principal_plane`
- calculate phasor coordinates for FRET donor and acceptor channels:
- :py:func:`phasor_from_fret_donor`
- :py:func:`phasor_from_fret_acceptor`
- convert between single component lifetimes and optimal frequency:
- :py:func:`lifetime_to_frequency`
- :py:func:`lifetime_from_frequency`
- convert between fractional intensities and pre-exponential amplitudes:
- :py:func:`lifetime_fraction_from_amplitude`
- :py:func:`lifetime_fraction_to_amplitude`
- calculate phasor coordinates on semicircle at other harmonics:
- :py:func:`phasor_at_harmonic`
- filter phasor coordinates:
- :py:func:`phasor_filter`
- :py:func:`phasor_threshold`
"""
from __future__ import annotations
__all__ = [
'lifetime_fraction_from_amplitude',
'lifetime_fraction_to_amplitude',
'lifetime_from_frequency',
'lifetime_to_frequency',
'lifetime_to_signal',
'phasor_at_harmonic',
'phasor_calibrate',
'phasor_center',
'phasor_divide',
'phasor_filter',
'phasor_from_apparent_lifetime',
'phasor_from_fret_acceptor',
'phasor_from_fret_donor',
'phasor_from_lifetime',
'phasor_from_polar',
'phasor_from_signal',
'phasor_multiply',
'phasor_semicircle',
'phasor_threshold',
'phasor_to_apparent_lifetime',
'phasor_to_complex',
'phasor_to_polar',
'phasor_to_principal_plane',
'phasor_to_signal',
'phasor_transform',
'polar_from_apparent_lifetime',
'polar_from_reference',
'polar_from_reference_phasor',
'polar_to_apparent_lifetime',
]
import math
from collections.abc import Sequence
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from ._typing import (
Any,
NDArray,
ArrayLike,
DTypeLike,
Callable,
Literal,
)
import numpy
from ._phasorpy import (
_gaussian_signal,
_median_filter_2d,
_phasor_at_harmonic,
_phasor_divide,
_phasor_from_apparent_lifetime,
_phasor_from_fret_acceptor,
_phasor_from_fret_donor,
_phasor_from_lifetime,
_phasor_from_polar,
_phasor_from_signal,
_phasor_from_single_lifetime,
_phasor_multiply,
_phasor_threshold_closed,
_phasor_threshold_mean_closed,
_phasor_threshold_mean_open,
_phasor_threshold_nan,
_phasor_threshold_open,
_phasor_to_apparent_lifetime,
_phasor_to_polar,
_phasor_transform,
_phasor_transform_const,
_polar_from_apparent_lifetime,
_polar_from_reference,
_polar_from_reference_phasor,
_polar_from_single_lifetime,
_polar_to_apparent_lifetime,
)
from ._utils import parse_harmonic
from .utils import number_threads
[docs]
def phasor_from_signal(
signal: ArrayLike,
/,
*,
axis: int = -1,
harmonic: int | Sequence[int] | Literal['all'] | str | None = None,
sample_phase: ArrayLike | None = None,
use_fft: bool | None = None,
rfft: Callable[..., NDArray[Any]] | None = None,
dtype: DTypeLike = None,
num_threads: int | None = None,
) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]:
r"""Return phasor coordinates from signal.
Parameters
----------
signal : array_like
Frequency-domain, time-domain, or hyperspectral data.
A minimum of three samples are required along `axis`.
The samples must be uniformly spaced.
axis : int, optional
Axis over which to compute phasor coordinates.
The default is the last axis (-1).
harmonic : int, sequence of int, or 'all', optional
Harmonics to return.
If `'all'`, return all harmonics for `signal` samples along `axis`.
Else, harmonics must be at least one and no larger than half the
number of `signal` samples along `axis`.
The default is the first harmonic (fundamental frequency).
A minimum of `harmonic * 2 + 1` samples are required along `axis`
to calculate correct phasor coordinates at `harmonic`.
sample_phase : array_like, optional
Phase values (in radians) of `signal` samples along `axis`.
If None (default), samples are assumed to be uniformly spaced along
one period.
The array size must equal the number of samples along `axis`.
Cannot be used with `harmonic!=1` or `use_fft=True`.
use_fft : bool, optional
If true, use a real forward Fast Fourier Transform (FFT).
If false, use a Cython implementation that is optimized (faster and
resource saving) for calculating few harmonics.
By default, FFT is only used when all or at least 8 harmonics are
calculated, or `rfft` is specified.
rfft : callable, optional
Drop-in replacement function for ``numpy.fft.rfft``.
For example, ``scipy.fft.rfft`` or ``mkl_fft._numpy_fft.rfft``.
Used to calculate the real forward FFT.
dtype : dtype_like, optional
Data type of output arrays. Either float32 or float64.
The default is float64 unless the `signal` is float32.
num_threads : int, optional
Number of OpenMP threads to use for parallelization when not using FFT.
By default, multi-threading is disabled.
If zero, up to half of logical CPUs are used.
OpenMP may not be available on all platforms.
Returns
-------
mean : ndarray
Average of `signal` along `axis` (zero harmonic).
real : ndarray
Real component of phasor coordinates at `harmonic` along `axis`.
imag : ndarray
Imaginary component of phasor coordinates at `harmonic` along `axis`.
Raises
------
ValueError
The `signal` has less than three samples along `axis`.
The `sample_phase` size does not equal the number of samples along
`axis`.
IndexError
`harmonic` is smaller than 1 or greater than half the samples along
`axis`.
TypeError
The `signal`, `dtype`, or `harmonic` types are not supported.
See Also
--------
phasorpy.phasor.phasor_to_signal
:ref:`sphx_glr_tutorials_benchmarks_phasorpy_phasor_from_signal.py`
Notes
-----
The phasor coordinates `real` (:math:`G`), `imag` (:math:`S`), and
`mean` (:math:`F_{DC}`) are calculated from :math:`K\ge3` samples of the
signal :math:`F` af `harmonic` :math:`h` according to:
.. math::
F_{DC} &= \frac{1}{K} \sum_{k=0}^{K-1} F_{k}
G &= \frac{1}{K} \sum_{k=0}^{K-1} F_{k}
\cos{\left (2 \pi h \frac{k}{K} \right )} \cdot \frac{1}{F_{DC}}
S &= \frac{1}{K} \sum_{k=0}^{K-1} F_{k}
\sin{\left (2 \pi h \frac{k}{K} \right )} \cdot \frac{1}{F_{DC}}
If :math:`F_{DC} = 0`, the phasor coordinates are undefined
(:math:`NaN` or :math:`\infty`).
Use `NaN`-aware software to further process the phasor coordinates.
The phasor coordinates may be zero, for example, in case of only constant
background in time-resolved signals, or as the result of linear
combination of non-zero spectral phasors coordinates.
Examples
--------
Calculate phasor coordinates of a phase-shifted sinusoidal waveform:
>>> sample_phase = numpy.linspace(0, 2 * math.pi, 5, endpoint=False)
>>> signal = 1.1 * (numpy.cos(sample_phase - 0.785398) * 2 * 0.707107 + 1)
>>> phasor_from_signal(signal) # doctest: +NUMBER
(array(1.1), array(0.5), array(0.5))
The sinusoidal signal does not have a second harmonic component:
>>> phasor_from_signal(signal, harmonic=2) # doctest: +NUMBER
(array(1.1), array(0.0), array(0.0))
"""
# TODO: C-order not required by rfft?
# TODO: preserve array subtypes?
signal = numpy.asarray(signal, order='C')
if signal.dtype.kind not in 'uif':
raise TypeError(f'signal must be real valued, not {signal.dtype=}')
samples = numpy.size(signal, axis) # this also verifies axis and ndim >= 1
if samples < 3:
raise ValueError(f'not enough {samples=} along {axis=}')
if dtype is None:
dtype = numpy.float32 if signal.dtype.char == 'f' else numpy.float64
dtype = numpy.dtype(dtype)
if dtype.kind != 'f':
raise TypeError(f'{dtype=} not supported')
harmonic, keepdims = parse_harmonic(harmonic, samples // 2)
num_harmonics = len(harmonic)
if sample_phase is not None:
if use_fft:
raise ValueError('sample_phase cannot be used with FFT')
if num_harmonics > 1 or harmonic[0] != 1:
raise ValueError('sample_phase cannot be used with harmonic != 1')
sample_phase = numpy.atleast_1d(
numpy.asarray(sample_phase, dtype=numpy.float64)
)
if sample_phase.ndim != 1 or sample_phase.size != samples:
raise ValueError(f'{sample_phase.shape=} != ({samples},)')
if use_fft is None:
use_fft = sample_phase is None and (
rfft is not None
or num_harmonics > 7
or num_harmonics >= samples // 2
)
if use_fft:
if rfft is None:
rfft = numpy.fft.rfft
fft: NDArray[Any] = rfft(signal, axis=axis, norm='forward')
mean = fft.take(0, axis=axis).real
if not mean.ndim == 0:
mean = numpy.ascontiguousarray(mean, dtype)
fft = fft.take(harmonic, axis=axis)
real = numpy.ascontiguousarray(fft.real, dtype)
imag = numpy.ascontiguousarray(fft.imag, dtype)
del fft
if not keepdims and real.shape[axis] == 1:
dc = mean
real = real.squeeze(axis)
imag = imag.squeeze(axis)
else:
# make broadcastable
dc = numpy.expand_dims(mean, 0)
real = numpy.moveaxis(real, axis, 0)
imag = numpy.moveaxis(imag, axis, 0)
# complex division by mean signal
with numpy.errstate(divide='ignore', invalid='ignore'):
real /= dc
imag /= dc
numpy.negative(imag, out=imag)
if not keepdims and real.ndim == 0:
return mean.squeeze(), real.squeeze(), imag.squeeze()
return mean, real, imag
num_threads = number_threads(num_threads)
sincos = numpy.empty((num_harmonics, samples, 2))
for i, h in enumerate(harmonic):
if sample_phase is None:
phase = numpy.linspace(
0,
h * math.pi * 2.0,
samples,
endpoint=False,
dtype=numpy.float64,
)
else:
phase = sample_phase
sincos[i, :, 0] = numpy.cos(phase)
sincos[i, :, 1] = numpy.sin(phase)
# reshape to 3D with axis in middle
axis = axis % signal.ndim
shape0 = signal.shape[:axis]
shape1 = signal.shape[axis + 1 :]
size0 = math.prod(shape0)
size1 = math.prod(shape1)
phasor = numpy.empty((num_harmonics * 2 + 1, size0, size1), dtype)
signal = signal.reshape((size0, samples, size1))
_phasor_from_signal(phasor, signal, sincos, num_threads)
# restore original shape
shape = shape0 + shape1
mean = phasor[0].reshape(shape)
if keepdims:
shape = (num_harmonics,) + shape
real = phasor[1 : num_harmonics + 1].reshape(shape)
imag = phasor[1 + num_harmonics :].reshape(shape)
if shape:
return mean, real, imag
return mean.squeeze(), real.squeeze(), imag.squeeze()
[docs]
def phasor_to_signal(
mean: ArrayLike,
real: ArrayLike,
imag: ArrayLike,
/,
*,
samples: int = 64,
harmonic: int | Sequence[int] | Literal['all'] | str | None = None,
axis: int = -1,
irfft: Callable[..., NDArray[Any]] | None = None,
) -> NDArray[numpy.float64]:
"""Return signal from phasor coordinates using inverse Fourier transform.
Parameters
----------
mean : array_like
Average signal intensity (DC).
If not scalar, shape must match the last two dimensions of `real`.
real : array_like
Real component of phasor coordinates.
Multiple harmonics, if any, must be in the first axis.
imag : array_like
Imaginary component of phasor coordinates.
Must be same shape as `real`.
samples : int, default: 64
Number of signal samples to return. Must be at least three.
harmonic : int, sequence of int, or 'all', optional
Harmonics included in first axis of `real` and `imag`.
If None, lower harmonics are inferred from the shapes of phasor
coordinates (most commonly, lower harmonics are present if the number
of dimensions of `mean` is one less than `real`).
If `'all'`, the harmonics in the first axis of phasor coordinates are
the lower harmonics necessary to synthesize `samples`.
Else, harmonics must be at least one and no larger than half of
`samples`.
The phasor coordinates of missing harmonics are zeroed
if `samples` is greater than twice the number of harmonics.
axis : int, optional
Axis at which to return signal samples.
The default is the last axis (-1).
irfft : callable, optional
Drop-in replacement function for ``numpy.fft.irfft``.
For example, ``scipy.fft.irfft`` or ``mkl_fft._numpy_fft.irfft``.
Used to calculate the real inverse FFT.
Returns
-------
signal : ndarray
Reconstructed signal with samples of one period along the last axis.
See Also
--------
phasorpy.phasor.phasor_from_signal
Notes
-----
The reconstructed signal may be undefined if the input phasor coordinates,
or signal mean contain `NaN` values.
Examples
--------
Reconstruct exact signal from phasor coordinates at all harmonics:
>>> sample_phase = numpy.linspace(0, 2 * math.pi, 5, endpoint=False)
>>> signal = 1.1 * (numpy.cos(sample_phase - 0.785398) * 2 * 0.707107 + 1)
>>> signal
array([2.2, 2.486, 0.8566, -0.4365, 0.3938])
>>> phasor_to_signal(
... *phasor_from_signal(signal, harmonic='all'),
... harmonic='all',
... samples=len(signal)
... ) # doctest: +NUMBER
array([2.2, 2.486, 0.8566, -0.4365, 0.3938])
Reconstruct a single-frequency waveform from phasor coordinates at
first harmonic:
>>> phasor_to_signal(1.1, 0.5, 0.5, samples=5) # doctest: +NUMBER
array([2.2, 2.486, 0.8566, -0.4365, 0.3938])
"""
if samples < 3:
raise ValueError(f'{samples=} < 3')
mean = numpy.array(mean, ndmin=0, copy=True)
real = numpy.array(real, ndmin=0, copy=True)
imag = numpy.array(imag, ndmin=1, copy=True)
harmonic_ = harmonic
harmonic, has_harmonic_axis = parse_harmonic(harmonic, samples // 2)
if real.ndim == 1 and len(harmonic) > 1 and real.shape[0] == len(harmonic):
# single axis contains harmonic
has_harmonic_axis = True
real = real[..., None]
imag = imag[..., None]
keepdims = mean.ndim > 0
else:
keepdims = mean.ndim > 0 or real.ndim > 0
mean, real = numpy.atleast_1d(mean, real)
if real.dtype.kind != 'f' or imag.dtype.kind != 'f':
raise ValueError(f'{real.dtype=} or {imag.dtype=} not floating point')
if real.shape != imag.shape:
raise ValueError(f'{real.shape=} != {imag.shape=}')
if (
harmonic_ is None
and mean.size > 1
and mean.ndim + 1 == real.ndim
and mean.shape == real.shape[1:]
):
# infer harmonic from shapes of mean and real
harmonic = list(range(1, real.shape[0] + 1))
has_harmonic_axis = True
if not has_harmonic_axis:
real = real[None, ...]
imag = imag[None, ...]
if len(harmonic) != real.shape[0]:
raise ValueError(f'{len(harmonic)=} != {real.shape[0]=}')
# complex multiplication by mean signal
real *= mean
imag *= mean
numpy.negative(imag, out=imag)
fft: NDArray[Any] = numpy.zeros(
(samples // 2 + 1, *real.shape[1:]), dtype=numpy.complex128
)
fft.real[[0]] = mean
fft.real[harmonic] = real[: len(harmonic)]
fft.imag[harmonic] = imag[: len(harmonic)]
if irfft is None:
irfft = numpy.fft.irfft
signal: NDArray[Any] = irfft(fft, samples, axis=0, norm='forward')
if not keepdims:
signal = signal[:, 0]
elif axis != 0:
signal = numpy.moveaxis(signal, 0, axis)
return signal
[docs]
def lifetime_to_signal(
frequency: float,
lifetime: ArrayLike,
fraction: ArrayLike | None = None,
*,
mean: ArrayLike | None = None,
background: ArrayLike | None = None,
samples: int = 64,
harmonic: int | Sequence[int] | Literal['all'] | str | None = None,
zero_phase: float | None = None,
zero_stdev: float | None = None,
preexponential: bool = False,
unit_conversion: float = 1e-3,
) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]:
r"""Return synthetic signal from lifetime components.
Return synthetic signal, instrument response function (IRF), and
time axis, sampled over one period of the fundamental frequency.
The signal is convoluted with the IRF, which is approximated by a
normal distribution.
Parameters
----------
frequency : float
Fundamental laser pulse or modulation frequency in MHz.
lifetime : array_like
Lifetime components in ns.
fraction : array_like, optional
Fractional intensities or pre-exponential amplitudes of the lifetime
components. Fractions are normalized to sum to 1.
Must be specified if `lifetime` is not a scalar.
mean : array_like, optional, default: 1.0
Average signal intensity (DC). Must be scalar for now.
background : array_like, optional, default: 0.0
Background signal intensity. Must be smaller than `mean`.
samples : int, default: 64
Number of signal samples to return. Must be at least 16.
harmonic : int, sequence of int, or 'all', optional, default: 'all'
Harmonics used to synthesize signal.
If `'all'`, all harmonics are used.
Else, harmonics must be at least one and no larger than half of
`samples`.
Use `'all'` to synthesize an exponential time-domain decay signal,
or `1` to synthesize a homodyne signal.
zero_phase : float, optional
Position of instrument response function in radians.
Must be in range 0.0 to :math:`\pi`. The default is the 8th sample.
zero_stdev : float, optional
Standard deviation of instrument response function in radians.
Must be at least 1.5 samples and no more than one tenth of samples
to allow for sufficient sampling of the function.
The default is 1.5 samples. Increase `samples` to narrow the IRF.
preexponential : bool, optional, default: False
If true, `fraction` values are pre-exponential amplitudes,
else fractional intensities.
unit_conversion : float, optional, default: 1e-3
Product of `frequency` and `lifetime` units' prefix factors.
The default is 1e-3 for MHz and ns, or Hz and ms.
Use 1.0 for Hz and s.
Returns
-------
signal : ndarray
Signal generated from lifetimes at frequency, convoluted with
instrument response function.
zero : ndarray
Instrument response function.
time : ndarray
Time for each sample in signal in units of `lifetime`.
See Also
--------
phasorpy.phasor.phasor_from_lifetime
phasorpy.phasor.phasor_to_signal
:ref:`sphx_glr_tutorials_api_phasorpy_lifetime_to_signal.py`
Notes
-----
This implementation is based on an inverse digital Fourier transform (DFT).
Because DFT cannot be used on signals with discontinuities
(for example, an exponential decay starting at zero) without producing
strong artifacts (ripples), the signal is convoluted with a continuous
instrument response function (IRF). The minimum width of the IRF is
limited due to sampling requirements.
Examples
--------
Synthesize a multi-exponential time-domain decay signal for two
lifetime components of 4.2 and 0.9 ns at 40 MHz:
>>> signal, zero, times = lifetime_to_signal(
... 40, [4.2, 0.9], fraction=[0.8, 0.2], samples=16
... )
>>> signal # doctest: +NUMBER
array([0.2846, 0.1961, 0.1354, ..., 0.8874, 0.6029, 0.4135])
Synthesize a homodyne frequency-domain waveform signal for
a single lifetime:
>>> signal, zero, times = lifetime_to_signal(
... 40.0, 4.2, samples=16, harmonic=1
... )
>>> signal # doctest: +NUMBER
array([0.2047, -0.05602, -0.156, ..., 1.471, 1.031, 0.5865])
"""
if harmonic is None:
harmonic = 'all'
all_hamonics = harmonic == 'all'
harmonic, _ = parse_harmonic(harmonic, samples // 2)
if samples < 16:
raise ValueError(f'{samples=} < 16')
if background is None:
background = 0.0
background = numpy.asarray(background)
if mean is None:
mean = 1.0
mean = numpy.asarray(mean)
mean -= background
if numpy.any(mean <= 0.0):
raise ValueError('mean - background must not be less than zero')
scale = samples / (2.0 * math.pi)
if zero_phase is None:
zero_phase = 8.0 / scale
phase = zero_phase * scale # in sample units
if zero_stdev is None:
zero_stdev = 1.5 / scale
stdev = zero_stdev * scale # in sample units
if zero_phase < 0 or zero_phase > 2.0 * math.pi:
raise ValueError(f'{zero_phase=} out of range [0 .. 2 pi]')
if stdev < 1.5:
raise ValueError(
f'{zero_stdev=} < {1.5 / scale} cannot be sampled sufficiently'
)
if stdev >= samples / 10:
raise ValueError(f'{zero_stdev=} > pi / 5 not supported')
frequencies = numpy.atleast_1d(frequency)
if frequencies.size > 1 or frequencies[0] <= 0.0:
raise ValueError('frequency must be scalar and positive')
frequencies = numpy.linspace(
frequency, samples // 2 * frequency, samples // 2
)
frequencies = frequencies[[h - 1 for h in harmonic]]
real, imag = phasor_from_lifetime(
frequencies,
lifetime,
fraction,
preexponential=preexponential,
unit_conversion=unit_conversion,
)
real, imag = numpy.atleast_1d(real, imag)
zero = numpy.zeros(samples, dtype=numpy.float64)
_gaussian_signal(zero, phase, stdev)
zero_mean, zero_real, zero_imag = phasor_from_signal(
zero, harmonic=harmonic
)
if real.ndim > 1:
# make broadcastable with real and imag
zero_real = zero_real[:, None]
zero_imag = zero_imag[:, None]
if not all_hamonics:
zero = phasor_to_signal(
zero_mean, zero_real, zero_imag, samples=samples, harmonic=harmonic
)
phasor_multiply(real, imag, zero_real, zero_imag, out=(real, imag))
if len(harmonic) == 1:
harmonic = harmonic[0]
signal = phasor_to_signal(
mean, real, imag, samples=samples, harmonic=harmonic
)
signal += numpy.asarray(background)
time = numpy.linspace(0, 1.0 / (unit_conversion * frequency), samples)
return signal.squeeze(), zero.squeeze(), time
[docs]
def phasor_semicircle(
samples: int = 101, /
) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]:
r"""Return equally spaced phasor coordinates on universal semicircle.
Parameters
----------
samples : int, optional, default: 101
Number of coordinates to return.
Returns
-------
real : ndarray
Real component of semicircle phasor coordinates.
imag : ndarray
Imaginary component of semicircle phasor coordinates.
Raises
------
ValueError
The number of `samples` is smaller than 1.
Notes
-----
If more than one sample, the first and last phasor coordinates returned
are ``(0, 0)`` and ``(1, 0)``.
The center coordinate, if any, is ``(0.5, 0.5)``.
The universal semicircle is composed of the phasor coordinates of
single lifetime components, where the relation of polar coordinates
(phase :math:`\phi` and modulation :math:`M`) is:
.. math::
M = \cos{\phi}
Examples
--------
Calculate three phasor coordinates on universal semicircle:
>>> phasor_semicircle(3) # doctest: +NUMBER
(array([0, 0.5, 1]), array([0.0, 0.5, 0]))
"""
if samples < 1:
raise ValueError(f'{samples=} < 1')
arange = numpy.linspace(math.pi, 0.0, samples)
real = numpy.cos(arange)
real += 1.0
real *= 0.5
imag = numpy.sin(arange)
imag *= 0.5
return real, imag
[docs]
def phasor_to_complex(
real: ArrayLike,
imag: ArrayLike,
/,
*,
dtype: DTypeLike = None,
) -> NDArray[numpy.complex64 | numpy.complex128]:
"""Return phasor coordinates as complex numbers.
Parameters
----------
real : array_like
Real component of phasor coordinates.
imag : array_like
Imaginary component of phasor coordinates.
dtype : dtype_like, optional
Data type of output array. Either complex64 or complex128.
By default, complex64 if `real` and `imag` are float32,
else complex128.
Returns
-------
complex : ndarray
Phasor coordinates as complex numbers.
Examples
--------
Convert phasor coordinates to complex number arrays:
>>> phasor_to_complex([0.4, 0.5], [0.2, 0.3])
array([0.4+0.2j, 0.5+0.3j])
"""
real = numpy.asarray(real)
imag = numpy.asarray(imag)
if dtype is None:
if real.dtype == numpy.float32 and imag.dtype == numpy.float32:
dtype = numpy.complex64
else:
dtype = numpy.complex128
else:
dtype = numpy.dtype(dtype)
if dtype.kind != 'c':
raise ValueError(f'{dtype=} not a complex type')
c = numpy.empty(numpy.broadcast(real, imag).shape, dtype)
c.real = real
c.imag = imag
return c
[docs]
def phasor_multiply(
real: ArrayLike,
imag: ArrayLike,
factor_real: ArrayLike,
factor_imag: ArrayLike,
/,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
r"""Return complex multiplication of two phasors.
Complex multiplication can be used, for example, to convolve two signals
such as exponential decay and instrument response functions.
Parameters
----------
real : array_like
Real component of phasor coordinates to multiply.
imag : array_like
Imaginary component of phasor coordinates to multiply.
factor_real : array_like
Real component of phasor coordinates to multiply by.
factor_imag : array_like
Imaginary component of phasor coordinates to multiply by.
**kwargs
Optional `arguments passed to numpy universal functions
<https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Returns
-------
real : ndarray
Real component of complex multiplication.
imag : ndarray
Imaginary component of complex multiplication.
Notes
-----
The phasor coordinates `real` (:math:`G`) and `imag` (:math:`S`)
are multiplied by phasor coordinates `factor_real` (:math:`g`)
and `factor_imag` (:math:`s`) according to:
.. math::
G' &= G \cdot g - S \cdot s
S' &= G \cdot s + S \cdot g
Examples
--------
Multiply two sets of phasor coordinates:
>>> phasor_multiply([0.1, 0.2], [0.3, 0.4], [0.5, 0.6], [0.7, 0.8])
(array([-0.16, -0.2]), array([0.22, 0.4]))
"""
# c = phasor_to_complex(real, imag) * phasor_to_complex(
# factor_real, factor_imag
# )
# return c.real, c.imag
return _phasor_multiply( # type: ignore[no-any-return]
real, imag, factor_real, factor_imag, **kwargs
)
[docs]
def phasor_divide(
real: ArrayLike,
imag: ArrayLike,
divisor_real: ArrayLike,
divisor_imag: ArrayLike,
/,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
r"""Return complex division of two phasors.
Complex division can be used, for example, to deconvolve two signals
such as exponential decay and instrument response functions.
Parameters
----------
real : array_like
Real component of phasor coordinates to divide.
imag : array_like
Imaginary component of phasor coordinates to divide.
divisor_real : array_like
Real component of phasor coordinates to divide by.
divisor_imag : array_like
Imaginary component of phasor coordinates to divide by.
**kwargs
Optional `arguments passed to numpy universal functions
<https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Returns
-------
real : ndarray
Real component of complex division.
imag : ndarray
Imaginary component of complex division.
Notes
-----
The phasor coordinates `real` (:math:`G`) and `imag` (:math:`S`)
are divided by phasor coordinates `divisor_real` (:math:`g`)
and `divisor_imag` (:math:`s`) according to:
.. math::
d &= g \cdot g + s \cdot s
G' &= (G \cdot g + S \cdot s) / d
S' &= (G \cdot s - S \cdot g) / d
Examples
--------
Divide two sets of phasor coordinates:
>>> phasor_divide([-0.16, -0.2], [0.22, 0.4], [0.5, 0.6], [0.7, 0.8])
(array([0.1, 0.2]), array([0.3, 0.4]))
"""
# c = phasor_to_complex(real, imag) / phasor_to_complex(
# divisor_real, divisor_imag
# )
# return c.real, c.imag
return _phasor_divide( # type: ignore[no-any-return]
real, imag, divisor_real, divisor_imag, **kwargs
)
[docs]
def phasor_calibrate(
real: ArrayLike,
imag: ArrayLike,
reference_real: ArrayLike,
reference_imag: ArrayLike,
/,
frequency: ArrayLike,
lifetime: ArrayLike,
*,
harmonic: int | Sequence[int] | Literal['all'] | str | None = None,
skip_axis: int | Sequence[int] | None = None,
fraction: ArrayLike | None = None,
preexponential: bool = False,
unit_conversion: float = 1e-3,
reverse: bool = False,
method: Literal['mean', 'median'] = 'mean',
) -> tuple[NDArray[Any], NDArray[Any]]:
"""
Return calibrated/referenced phasor coordinates.
Calibration of phasor coordinates from time-resolved measurements is
necessary to account for the instrument response function (IRF) and delays
in the electronics.
Parameters
----------
real : array_like
Real component of phasor coordinates to be calibrated.
imag : array_like
Imaginary component of phasor coordinates to be calibrated.
reference_real : array_like
Real component of phasor coordinates from reference of known lifetime.
Must be measured with the same instrument setting as the phasor
coordinates to be calibrated.
reference_imag : array_like
Imaginary component of phasor coordinates from reference of known
lifetime.
Must be measured with the same instrument setting as the phasor
coordinates to be calibrated.
frequency : array_like
Fundamental laser pulse or modulation frequency in MHz.
lifetime : array_like
Lifetime components in ns. Must be scalar or one-dimensional.
harmonic : int, sequence of int, or 'all', default: 1
Harmonics included in `real` and `imag`.
If an integer, the harmonics at which `real` and `imag` were acquired
or calculated.
If a sequence, the harmonics included in the first axis of `real` and
`imag`.
If `'all'`, the first axis of `real` and `imag` contains lower
harmonics.
The default is the first harmonic (fundamental frequency).
skip_axis : int or sequence of int, optional
Axes to be excluded during center calculation. If None, all
axes are considered, except for the first axis if multiple harmonics
are specified.
fraction : array_like, optional
Fractional intensities or pre-exponential amplitudes of the lifetime
components. Fractions are normalized to sum to 1.
Must be same size as `lifetime`.
preexponential : bool, optional
If true, `fraction` values are pre-exponential amplitudes,
else fractional intensities (default).
unit_conversion : float, optional
Product of `frequency` and `lifetime` units' prefix factors.
The default is 1e-3 for MHz and ns, or Hz and ms.
Use 1.0 for Hz and s.
reverse : bool, optional
Reverse calibration.
method : str, optional
Method used for calculating center of `reference_real` and
`reference_imag`:
- ``'mean'``: Arithmetic mean of phasor coordinates.
- ``'median'``: Spatial median of phasor coordinates.
Returns
-------
real : ndarray
Calibrated real component of phasor coordinates.
imag : ndarray
Calibrated imaginary component of phasor coordinates.
Raises
------
ValueError
The array shapes of `real` and `imag`, or `reference_real` and
`reference_imag` do not match.
Number of harmonics does not match the first axis of `real` and `imag`.
See Also
--------
phasorpy.phasor.phasor_transform
phasorpy.phasor.polar_from_reference_phasor
phasorpy.phasor.phasor_center
phasorpy.phasor.phasor_from_lifetime
Notes
-----
This function is a convenience wrapper for the following operations:
.. code-block:: python
phasor_transform(
real,
imag,
*polar_from_reference_phasor(
*phasor_center(
reference_real,
reference_imag,
skip_axis,
method,
),
*phasor_from_lifetime(
frequency,
lifetime,
fraction,
preexponential,
unit_conversion,
),
),
)
Calibration can be reversed such that
.. code-block:: python
real, imag == phasor_calibrate(
*phasor_calibrate(real, imag, *args, **kwargs),
*args,
reverse=True,
**kwargs
)
Examples
--------
>>> phasor_calibrate(
... [0.1, 0.2, 0.3],
... [0.4, 0.5, 0.6],
... [0.2, 0.3, 0.4],
... [0.5, 0.6, 0.7],
... frequency=80,
... lifetime=4,
... ) # doctest: +NUMBER
(array([0.0658, 0.132, 0.198]), array([0.2657, 0.332, 0.399]))
Undo the previous calibration:
>>> phasor_calibrate(
... [0.0658, 0.132, 0.198],
... [0.2657, 0.332, 0.399],
... [0.2, 0.3, 0.4],
... [0.5, 0.6, 0.7],
... frequency=80,
... lifetime=4,
... reverse=True,
... ) # doctest: +NUMBER
(array([0.1, 0.2, 0.3]), array([0.4, 0.5, 0.6]))
"""
re = numpy.asarray(real)
im = numpy.asarray(imag)
if re.shape != im.shape:
raise ValueError(f'real.shape={re.shape} != imag.shape={im.shape}')
ref_re = numpy.asarray(reference_real)
ref_im = numpy.asarray(reference_imag)
if ref_re.shape != ref_im.shape:
raise ValueError(
f'reference_real.shape={ref_re.shape} '
f'!= reference_imag.shape{ref_im.shape}'
)
if harmonic == 'all' and re.ndim > 0:
harmonic, has_harmonic_axis = parse_harmonic(harmonic, re.shape[0])
else:
harmonic, has_harmonic_axis = parse_harmonic(harmonic)
if has_harmonic_axis and len(harmonic) != re.shape[0]:
raise ValueError(f'{len(harmonic)=} != real.shape[0]={re.shape[0]}')
frequency = numpy.asarray(frequency)
frequency = frequency * harmonic
skip_axis, axis = _parse_skip_axis(skip_axis, re.ndim)
if has_harmonic_axis:
skip_axis = (0,) + skip_axis if 0 not in skip_axis else skip_axis
skip_axis, axis = _parse_skip_axis(skip_axis, re.ndim)
measured_re, measured_im = phasor_center(
reference_real, reference_imag, skip_axis=skip_axis, method=method
)
known_re, known_im = phasor_from_lifetime(
frequency,
lifetime,
fraction,
preexponential=preexponential,
unit_conversion=unit_conversion,
)
phi_zero, mod_zero = polar_from_reference_phasor(
measured_re, measured_im, known_re, known_im
)
if numpy.ndim(phi_zero) > 0:
if reverse:
numpy.negative(phi_zero, out=phi_zero)
numpy.reciprocal(mod_zero, out=mod_zero)
if axis is not None:
phi_zero = numpy.expand_dims(
phi_zero,
axis=axis,
)
mod_zero = numpy.expand_dims(
mod_zero,
axis=axis,
)
elif reverse:
phi_zero = -phi_zero
mod_zero = 1.0 / mod_zero
return phasor_transform(re, im, phi_zero, mod_zero)
[docs]
def polar_from_reference_phasor(
measured_real: ArrayLike,
measured_imag: ArrayLike,
known_real: ArrayLike,
known_imag: ArrayLike,
/,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
r"""Return polar coordinates for calibration from reference phasor.
Return rotation angle and scale factor for calibrating phasor coordinates
from measured and known phasor coordinates of a reference, for example,
a sample of known lifetime.
Parameters
----------
measured_real : array_like
Real component of measured phasor coordinates.
measured_imag : array_like
Imaginary component of measured phasor coordinates.
known_real : array_like
Real component of reference phasor coordinates.
known_imag : array_like
Imaginary component of reference phasor coordinates.
**kwargs
Optional `arguments passed to numpy universal functions
<https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Returns
-------
phase_zero : ndarray
Angular component of polar coordinates for calibration in radians.
modulation_zero : ndarray
Radial component of polar coordinates for calibration.
See Also
--------
phasorpy.phasor.polar_from_reference
Notes
-----
This function performs the following operations:
.. code-block:: python
polar_from_reference(
*phasor_to_polar(measured_real, measured_imag),
*phasor_to_polar(known_real, known_imag),
)
Examples
--------
>>> polar_from_reference_phasor(0.5, 0.0, 1.0, 0.0)
(0.0, 2.0)
"""
return _polar_from_reference_phasor( # type: ignore[no-any-return]
measured_real, measured_imag, known_real, known_imag, **kwargs
)
[docs]
def polar_from_reference(
measured_phase: ArrayLike,
measured_modulation: ArrayLike,
known_phase: ArrayLike,
known_modulation: ArrayLike,
/,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
r"""Return polar coordinates for calibration from reference coordinates.
Return rotation angle and scale factor for calibrating phasor coordinates
from measured and known polar coordinates of a reference, for example,
a sample of known lifetime.
Parameters
----------
measured_phase : array_like
Angular component of measured polar coordinates in radians.
measured_modulation : array_like
Radial component of measured polar coordinates.
known_phase : array_like
Angular component of reference polar coordinates in radians.
known_modulation : array_like
Radial component of reference polar coordinates.
**kwargs
Optional `arguments passed to numpy universal functions
<https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Returns
-------
phase_zero : ndarray
Angular component of polar coordinates for calibration in radians.
modulation_zero : ndarray
Radial component of polar coordinates for calibration.
See Also
--------
phasorpy.phasor.polar_from_reference_phasor
Examples
--------
>>> polar_from_reference(0.2, 0.4, 0.4, 1.3)
(0.2, 3.25)
"""
return _polar_from_reference( # type: ignore[no-any-return]
measured_phase,
measured_modulation,
known_phase,
known_modulation,
**kwargs,
)
[docs]
def phasor_to_polar(
real: ArrayLike,
imag: ArrayLike,
/,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
r"""Return polar coordinates from phasor coordinates.
Parameters
----------
real : array_like
Real component of phasor coordinates.
imag : array_like
Imaginary component of phasor coordinates.
**kwargs
Optional `arguments passed to numpy universal functions
<https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Notes
-----
The phasor coordinates `real` (:math:`G`) and `imag` (:math:`S`)
are converted to polar coordinates `phase` (:math:`\phi`) and
`modulation` (:math:`M`) according to:
.. math::
\phi &= \arctan(S / G)
M &= \sqrt{G^2 + S^2}
Returns
-------
phase : ndarray
Angular component of polar coordinates in radians.
modulation : ndarray
Radial component of polar coordinates.
See Also
--------
phasorpy.phasor.phasor_from_polar
Examples
--------
Calculate polar coordinates from three phasor coordinates:
>>> phasor_to_polar([1.0, 0.5, 0.0], [0.0, 0.5, 1.0]) # doctest: +NUMBER
(array([0, 0.7854, 1.571]), array([1, 0.7071, 1]))
"""
return _phasor_to_polar( # type: ignore[no-any-return]
real, imag, **kwargs
)
[docs]
def phasor_from_polar(
phase: ArrayLike,
modulation: ArrayLike,
/,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
r"""Return phasor coordinates from polar coordinates.
Parameters
----------
phase : array_like
Angular component of polar coordinates in radians.
modulation : array_like
Radial component of polar coordinates.
**kwargs
Optional `arguments passed to numpy universal functions
<https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Returns
-------
real : ndarray
Real component of phasor coordinates.
imag : ndarray
Imaginary component of phasor coordinates.
See Also
--------
phasorpy.phasor.phasor_to_polar
Notes
-----
The polar coordinates `phase` (:math:`\phi`) and `modulation` (:math:`M`)
are converted to phasor coordinates `real` (:math:`G`) and
`imag` (:math:`S`) according to:
.. math::
G &= M \cdot \cos{\phi}
S &= M \cdot \sin{\phi}
Examples
--------
Calculate phasor coordinates from three polar coordinates:
>>> phasor_from_polar(
... [0.0, math.pi / 4, math.pi / 2], [1.0, math.sqrt(0.5), 1.0]
... ) # doctest: +NUMBER
(array([1, 0.5, 0.0]), array([0, 0.5, 1]))
"""
return _phasor_from_polar( # type: ignore[no-any-return]
phase, modulation, **kwargs
)
[docs]
def phasor_to_apparent_lifetime(
real: ArrayLike,
imag: ArrayLike,
/,
frequency: ArrayLike,
*,
unit_conversion: float = 1e-3,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
r"""Return apparent single lifetimes from phasor coordinates.
Parameters
----------
real : array_like
Real component of phasor coordinates.
imag : array_like
Imaginary component of phasor coordinates.
frequency : array_like
Laser pulse or modulation frequency in MHz.
unit_conversion : float, optional
Product of `frequency` and returned `lifetime` units' prefix factors.
The default is 1e-3 for MHz and ns, or Hz and ms.
Use 1.0 for Hz and s.
**kwargs
Optional `arguments passed to numpy universal functions
<https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Returns
-------
phase_lifetime : ndarray
Apparent single lifetime from angular component of phasor coordinates.
modulation_lifetime : ndarray
Apparent single lifetime from radial component of phasor coordinates.
See Also
--------
phasorpy.phasor.phasor_from_apparent_lifetime
Notes
-----
The phasor coordinates `real` (:math:`G`) and `imag` (:math:`S`)
are converted to apparent single lifetimes
`phase_lifetime` (:math:`\tau_{\phi}`) and
`modulation_lifetime` (:math:`\tau_{M}`) at frequency :math:`f`
according to:
.. math::
\omega &= 2 \pi f
\tau_{\phi} &= \omega^{-1} \cdot S / G
\tau_{M} &= \omega^{-1} \cdot \sqrt{1 / (S^2 + G^2) - 1}
Examples
--------
The apparent single lifetimes from phase and modulation are equal
only if the phasor coordinates lie on the universal semicircle:
>>> phasor_to_apparent_lifetime(
... 0.5, [0.5, 0.45], frequency=80
... ) # doctest: +NUMBER
(array([1.989, 1.79]), array([1.989, 2.188]))
Apparent single lifetimes of phasor coordinates outside the universal
semicircle are undefined:
>>> phasor_to_apparent_lifetime(-0.1, 1.1, 80) # doctest: +NUMBER
(-21.8, 0.0)
Apparent single lifetimes at the universal semicircle endpoints are
infinite and zero:
>>> phasor_to_apparent_lifetime([0, 1], [0, 0], 80) # doctest: +NUMBER
(array([inf, 0]), array([inf, 0]))
"""
omega = numpy.array(frequency, dtype=numpy.float64) # makes copy
omega *= math.pi * 2.0 * unit_conversion
return _phasor_to_apparent_lifetime( # type: ignore[no-any-return]
real, imag, omega, **kwargs
)
[docs]
def phasor_from_apparent_lifetime(
phase_lifetime: ArrayLike,
modulation_lifetime: ArrayLike | None,
/,
frequency: ArrayLike,
*,
unit_conversion: float = 1e-3,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
r"""Return phasor coordinates from apparent single lifetimes.
Parameters
----------
phase_lifetime : ndarray
Apparent single lifetime from phase.
modulation_lifetime : ndarray, optional
Apparent single lifetime from modulation.
If None, `modulation_lifetime` is same as `phase_lifetime`.
frequency : array_like
Laser pulse or modulation frequency in MHz.
unit_conversion : float, optional
Product of `frequency` and `lifetime` units' prefix factors.
The default is 1e-3 for MHz and ns, or Hz and ms.
Use 1.0 for Hz and s.
**kwargs
Optional `arguments passed to numpy universal functions
<https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Returns
-------
real : ndarray
Real component of phasor coordinates.
imag : ndarray
Imaginary component of phasor coordinates.
See Also
--------
phasorpy.phasor.phasor_to_apparent_lifetime
Notes
-----
The apparent single lifetimes `phase_lifetime` (:math:`\tau_{\phi}`)
and `modulation_lifetime` (:math:`\tau_{M}`) are converted to phasor
coordinates `real` (:math:`G`) and `imag` (:math:`S`) at
frequency :math:`f` according to:
.. math::
\omega &= 2 \pi f
\phi & = \arctan(\omega \tau_{\phi})
M &= 1 / \sqrt{1 + (\omega \tau_{M})^2}
G &= M \cdot \cos{\phi}
S &= M \cdot \sin{\phi}
Examples
--------
If the apparent single lifetimes from phase and modulation are equal,
the phasor coordinates lie on the universal semicircle, else inside:
>>> phasor_from_apparent_lifetime(
... 1.9894, [1.9894, 2.4113], frequency=80.0
... ) # doctest: +NUMBER
(array([0.5, 0.45]), array([0.5, 0.45]))
Zero and infinite apparent single lifetimes define the endpoints of the
universal semicircle:
>>> phasor_from_apparent_lifetime(
... [0.0, 1e9], [0.0, 1e9], frequency=80
... ) # doctest: +NUMBER
(array([1, 0.0]), array([0, 0.0]))
"""
omega = numpy.array(frequency, dtype=numpy.float64) # makes copy
omega *= math.pi * 2.0 * unit_conversion
if modulation_lifetime is None:
return _phasor_from_single_lifetime( # type: ignore[no-any-return]
phase_lifetime, omega, **kwargs
)
return _phasor_from_apparent_lifetime( # type: ignore[no-any-return]
phase_lifetime, modulation_lifetime, omega, **kwargs
)
[docs]
def lifetime_to_frequency(
lifetime: ArrayLike,
*,
unit_conversion: float = 1e-3,
) -> NDArray[numpy.float64]:
r"""Return optimal frequency for resolving single component lifetime.
Parameters
----------
lifetime : array_like
Single component lifetime.
unit_conversion : float, optional, default: 1e-3
Product of `frequency` and `lifetime` units' prefix factors.
The default is 1e-3 for MHz and ns, or Hz and ms.
Use 1.0 for Hz and s.
Returns
-------
frequency : ndarray
Optimal laser pulse or modulation frequency for resolving `lifetime`.
Notes
-----
The optimal frequency :math:`f` to resolve a single component lifetime
:math:`\tau` is
(:ref:`Redford & Clegg 2005 <redford-clegg-2005>`. Eq. B.6):
.. math::
\omega &= 2 \pi f
\omega^2 &= \frac{1 + \sqrt{3}}{2 \tau^2}
Examples
--------
Measurements of a lifetime near 4 ns should be made at 47 MHz,
near 1 ns at 186 MHz:
>>> lifetime_to_frequency([4.0, 1.0]) # doctest: +NUMBER
array([46.5, 186])
"""
t = numpy.reciprocal(lifetime, dtype=numpy.float64)
t *= 0.18601566519848653 / unit_conversion
return t
[docs]
def lifetime_from_frequency(
frequency: ArrayLike,
*,
unit_conversion: float = 1e-3,
) -> NDArray[numpy.float64]:
r"""Return single component lifetime best resolved at frequency.
Parameters
----------
frequency : array_like
Laser pulse or modulation frequency.
unit_conversion : float, optional, default: 1e-3
Product of `frequency` and `lifetime` units' prefix factors.
The default is 1e-3 for MHz and ns, or Hz and ms.
Use 1.0 for Hz and s.
Returns
-------
lifetime : ndarray
Single component lifetime best resolved at `frequency`.
Notes
-----
The lifetime :math:`\tau` that is best resolved at frequency :math:`f` is
(:ref:`Redford & Clegg 2005 <redford-clegg-2005>`. Eq. B.6):
.. math::
\omega &= 2 \pi f
\tau^2 &= \frac{1 + \sqrt{3}}{2 \omega^2}
Examples
--------
Measurements at frequencies of 47 and 186 MHz are best for measuring
lifetimes near 4 and 1 ns respectively:
>>> lifetime_from_frequency([46.5, 186]) # doctest: +NUMBER
array([4, 1])
"""
t = numpy.reciprocal(frequency, dtype=numpy.float64)
t *= 0.18601566519848653 / unit_conversion
return t
[docs]
def lifetime_fraction_to_amplitude(
lifetime: ArrayLike, fraction: ArrayLike, *, axis: int = -1
) -> NDArray[numpy.float64]:
r"""Return pre-exponential amplitude from fractional intensity.
Parameters
----------
lifetime : array_like
Lifetime components.
fraction : array_like
Fractional intensities of lifetime components.
Fractions are normalized to sum to 1.
axis : int, optional
Axis over which to compute pre-exponential amplitudes.
The default is the last axis (-1).
Returns
-------
amplitude : ndarray
Pre-exponential amplitudes.
The product of `amplitude` and `lifetime` sums to 1 along `axis`.
See Also
--------
phasorpy.phasor.lifetime_fraction_from_amplitude
Notes
-----
The pre-exponential amplitude :math:`a` of component :math:`j` with
lifetime :math:`\tau` and fractional intensity :math:`\alpha` is:
.. math::
a_{j} = \frac{\alpha_{j}}{\tau_{j} \cdot \sum_{j} \alpha_{j}}
Examples
--------
>>> lifetime_fraction_to_amplitude(
... [4.0, 1.0], [1.6, 0.4]
... ) # doctest: +NUMBER
array([0.2, 0.2])
"""
t = numpy.array(fraction, dtype=numpy.float64) # makes copy
t /= numpy.sum(t, axis=axis, keepdims=True)
numpy.true_divide(t, lifetime, out=t)
return t
[docs]
def lifetime_fraction_from_amplitude(
lifetime: ArrayLike, amplitude: ArrayLike, *, axis: int = -1
) -> NDArray[numpy.float64]:
r"""Return fractional intensity from pre-exponential amplitude.
Parameters
----------
lifetime : array_like
Lifetime of components.
amplitude : array_like
Pre-exponential amplitudes of lifetime components.
axis : int, optional
Axis over which to compute fractional intensities.
The default is the last axis (-1).
Returns
-------
fraction : ndarray
Fractional intensities, normalized to sum to 1 along `axis`.
See Also
--------
phasorpy.phasor.lifetime_fraction_to_amplitude
Notes
-----
The fractional intensity :math:`\alpha` of component :math:`j` with
lifetime :math:`\tau` and pre-exponential amplitude :math:`a` is:
.. math::
\alpha_{j} = \frac{a_{j} \tau_{j}}{\sum_{j} a_{j} \tau_{j}}
Examples
--------
>>> lifetime_fraction_from_amplitude(
... [4.0, 1.0], [1.0, 1.0]
... ) # doctest: +NUMBER
array([0.8, 0.2])
"""
t = numpy.multiply(amplitude, lifetime, dtype=numpy.float64)
t /= numpy.sum(t, axis=axis, keepdims=True)
return t
[docs]
def phasor_at_harmonic(
real: ArrayLike,
harmonic: ArrayLike,
other_harmonic: ArrayLike,
/,
**kwargs: Any,
) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]:
r"""Return phasor coordinates on universal semicircle at other harmonics.
Return phasor coordinates at any harmonic, given the real component of
phasor coordinates of a single exponential lifetime at a certain harmonic.
The input and output phasor coordinates lie on the universal semicircle.
Parameters
----------
real : array_like
Real component of phasor coordinates of single exponential lifetime
at `harmonic`.
harmonic : array_like
Harmonic of `real` coordinate. Must be integer >= 1.
other_harmonic : array_like
Harmonic for which to return phasor coordinates. Must be integer >= 1.
**kwargs
Optional `arguments passed to numpy universal functions
<https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Returns
-------
real_other : ndarray
Real component of phasor coordinates at `other_harmonic`.
imag_other : ndarray
Imaginary component of phasor coordinates at `other_harmonic`.
Notes
-----
The phasor coordinates
:math:`g_{n}` (`real_other`) and :math:`s_{n}` (`imag_other`)
of a single exponential lifetime at harmonic :math:`n` (`other_harmonic`)
is calculated from the real part of the phasor coordinates
:math:`g_{m}` (`real`) at harmonic :math:`m` (`harmonic`) according to
(:ref:`Torrado, Malacrida, & Ranjit. 2022 <torrado-2022>`. Eq. 25):
.. math::
g_{n} &= \frac{m^2 \cdot g_{m}}{n^2 + (m^2-n^2) \cdot g_{m}}
s_{n} &= \sqrt{G_{n} - g_{n}^2}
This function is equivalent to the following operations:
.. code-block:: python
phasor_from_lifetime(
frequency=other_harmonic,
lifetime=phasor_to_apparent_lifetime(
real, sqrt(real - real * real), frequency=harmonic
)[0],
)
Examples
--------
The phasor coordinates at higher harmonics are approaching the origin:
>>> phasor_at_harmonic(0.5, 1, [1, 2, 4, 8]) # doctest: +NUMBER
(array([0.5, 0.2, 0.05882, 0.01538]), array([0.5, 0.4, 0.2353, 0.1231]))
"""
harmonic = numpy.asarray(harmonic, dtype=numpy.int32)
if numpy.any(harmonic < 1):
raise ValueError('invalid harmonic')
other_harmonic = numpy.asarray(other_harmonic, dtype=numpy.int32)
if numpy.any(other_harmonic < 1):
raise ValueError('invalid other_harmonic')
return _phasor_at_harmonic( # type: ignore[no-any-return]
real, harmonic, other_harmonic, **kwargs
)
[docs]
def phasor_from_lifetime(
frequency: ArrayLike,
lifetime: ArrayLike,
fraction: ArrayLike | None = None,
*,
preexponential: bool = False,
unit_conversion: float = 1e-3,
keepdims: bool = False,
) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]:
r"""Return phasor coordinates from lifetime components.
Calculate phasor coordinates as a function of frequency, single or
multiple lifetime components, and the pre-exponential amplitudes
or fractional intensities of the components.
Parameters
----------
frequency : array_like
Laser pulse or modulation frequency in MHz.
A scalar or one-dimensional sequence.
lifetime : array_like
Lifetime components in ns. See notes below for allowed dimensions.
fraction : array_like, optional
Fractional intensities or pre-exponential amplitudes of the lifetime
components. Fractions are normalized to sum to 1.
See notes below for allowed dimensions.
preexponential : bool, optional, default: False
If true, `fraction` values are pre-exponential amplitudes,
else fractional intensities.
unit_conversion : float, optional, default: 1e-3
Product of `frequency` and `lifetime` units' prefix factors.
The default is 1e-3 for MHz and ns, or Hz and ms.
Use 1.0 for Hz and s.
keepdims : bool, optional, default: False
If true, length-one dimensions are left in phasor coordinates.
Returns
-------
real : ndarray
Real component of phasor coordinates.
imag : ndarray
Imaginary component of phasor coordinates.
See notes below for dimensions of the returned arrays.
Raises
------
ValueError
Input arrays exceed their allowed dimensionality or do not match.
Notes
-----
The phasor coordinates :math:`G` (`real`) and :math:`S` (`imag`) for
many lifetime components :math:`j` with lifetimes :math:`\tau` and
pre-exponential amplitudes :math:`\alpha` at frequency :math:`f` are:
.. math::
\omega &= 2 \pi f
g_{j} &= \alpha_{j} / (1 + (\omega \tau_{j})^2)
G &= \sum_{j} g_{j}
S &= \sum_{j} \omega \tau_{j} g_{j}
The relation between pre-exponential amplitudes :math:`a` and
fractional intensities :math:`\alpha` is:
.. math::
F_{DC} &= \sum_{j} a_{j} \tau_{j}
\alpha_{j} &= a_{j} \tau_{j} / F_{DC}
The following combinations of `lifetime` and `fraction` parameters are
supported:
- `lifetime` is scalar or one-dimensional, holding single component
lifetimes. `fraction` is None.
Return arrays of shape `(frequency.size, lifetime.size)`.
- `lifetime` is two-dimensional, `fraction` is one-dimensional.
The last dimensions match in size, holding lifetime components and
their fractions.
Return arrays of shape `(frequency.size, lifetime.shape[1])`.
- `lifetime` is one-dimensional, `fraction` is two-dimensional.
The last dimensions must match in size, holding lifetime components and
their fractions.
Return arrays of shape `(frequency.size, fraction.shape[1])`.
- `lifetime` and `fraction` are up to two-dimensional of same shape.
The last dimensions hold lifetime components and their fractions.
Return arrays of shape `(frequency.size, lifetime.shape[0])`.
Length-one dimensions are removed from returned arrays
if `keepdims` is false (default).
Examples
--------
Phasor coordinates of a single lifetime component (in ns) at a
frequency of 80 MHz:
>>> phasor_from_lifetime(80.0, 1.9894368) # doctest: +NUMBER
(0.5, 0.5)
Phasor coordinates of two lifetime components with equal fractional
intensities:
>>> phasor_from_lifetime(
... 80.0, [3.9788735, 0.9947183], [0.5, 0.5]
... ) # doctest: +NUMBER
(0.5, 0.4)
Phasor coordinates of two lifetime components with equal pre-exponential
amplitudes:
>>> phasor_from_lifetime(
... 80.0, [3.9788735, 0.9947183], [0.5, 0.5], preexponential=True
... ) # doctest: +NUMBER
(0.32, 0.4)
Phasor coordinates of many single-component lifetimes (fractions omitted):
>>> phasor_from_lifetime(
... 80.0, [3.9788735, 1.9894368, 0.9947183]
... ) # doctest: +NUMBER
(array([0.2, 0.5, 0.8]), array([0.4, 0.5, 0.4]))
Phasor coordinates of two lifetime components with varying fractions:
>>> phasor_from_lifetime(
... 80.0, [3.9788735, 0.9947183], [[1, 0], [0.5, 0.5], [0, 1]]
... ) # doctest: +NUMBER
(array([0.2, 0.5, 0.8]), array([0.4, 0.4, 0.4]))
Phasor coordinates of multiple two-component lifetimes with constant
fractions, keeping dimensions:
>>> phasor_from_lifetime(
... 80.0, [[3.9788735, 0.9947183], [1.9894368, 1.9894368]], [0.5, 0.5]
... ) # doctest: +NUMBER
(array([0.5, 0.5]), array([0.4, 0.5]))
Phasor coordinates of multiple two-component lifetimes with specific
fractions at multiple frequencies. Frequencies are in Hz, lifetimes in ns:
>>> phasor_from_lifetime(
... [40e6, 80e6],
... [[1e-9, 0.9947183e-9], [3.9788735e-9, 0.9947183e-9]],
... [[0, 1], [0.5, 0.5]],
... unit_conversion=1.0,
... ) # doctest: +NUMBER
(array([[0.941, 0.721], [0.8, 0.5]]), array([[0.235, 0.368], [0.4, 0.4]]))
"""
if unit_conversion < 1e-16:
raise ValueError(f'{unit_conversion=} < 1e-16')
frequency = numpy.atleast_1d(numpy.asarray(frequency, dtype=numpy.float64))
if frequency.ndim != 1:
raise ValueError('frequency is not one-dimensional array')
lifetime = numpy.atleast_1d(numpy.asarray(lifetime, dtype=numpy.float64))
if lifetime.ndim > 2:
raise ValueError('lifetime must be one- or two-dimensional array')
if fraction is None:
# single-component lifetimes
if lifetime.ndim > 1:
raise ValueError(
'lifetime must be one-dimensional array if fraction is None'
)
lifetime = lifetime.reshape(-1, 1) # move components to last axis
fraction = numpy.ones_like(lifetime) # not really used
else:
fraction = numpy.atleast_1d(
numpy.asarray(fraction, dtype=numpy.float64)
)
if fraction.ndim > 2:
raise ValueError('fraction must be one- or two-dimensional array')
if lifetime.ndim == 1 and fraction.ndim == 1:
# one multi-component lifetime
if lifetime.shape != fraction.shape:
raise ValueError(
f'{lifetime.shape=} does not match {fraction.shape=}'
)
lifetime = lifetime.reshape(1, -1)
fraction = fraction.reshape(1, -1)
nvar = 1
elif lifetime.ndim == 2 and fraction.ndim == 2:
# multiple, multi-component lifetimes
if lifetime.shape[1] != fraction.shape[1]:
raise ValueError(f'{lifetime.shape[1]=} != {fraction.shape[1]=}')
nvar = lifetime.shape[0]
elif lifetime.ndim == 2 and fraction.ndim == 1:
# variable components, same fractions
fraction = fraction.reshape(1, -1)
nvar = lifetime.shape[0]
elif lifetime.ndim == 1 and fraction.ndim == 2:
# same components, varying fractions
lifetime = lifetime.reshape(1, -1)
nvar = fraction.shape[0]
else:
# unreachable code
raise RuntimeError(f'{lifetime.shape=}, {fraction.shape=}')
phasor = numpy.empty((2, frequency.size, nvar), dtype=numpy.float64)
_phasor_from_lifetime(
phasor, frequency, lifetime, fraction, unit_conversion, preexponential
)
if not keepdims:
phasor = phasor.squeeze()
return phasor[0], phasor[1]
[docs]
def polar_to_apparent_lifetime(
phase: ArrayLike,
modulation: ArrayLike,
/,
frequency: ArrayLike,
*,
unit_conversion: float = 1e-3,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
r"""Return apparent single lifetimes from polar coordinates.
Parameters
----------
phase : array_like
Angular component of polar coordinates.
imag : array_like
Radial component of polar coordinates.
frequency : array_like
Laser pulse or modulation frequency in MHz.
unit_conversion : float, optional
Product of `frequency` and returned `lifetime` units' prefix factors.
The default is 1e-3 for MHz and ns, or Hz and ms.
Use 1.0 for Hz and s.
**kwargs
Optional `arguments passed to numpy universal functions
<https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Returns
-------
phase_lifetime : ndarray
Apparent single lifetime from `phase`.
modulation_lifetime : ndarray
Apparent single lifetime from `modulation`.
See Also
--------
phasorpy.phasor.polar_from_apparent_lifetime
Notes
-----
The polar coordinates `phase` (:math:`\phi`) and `modulation` (:math:`M`)
are converted to apparent single lifetimes
`phase_lifetime` (:math:`\tau_{\phi}`) and
`modulation_lifetime` (:math:`\tau_{M}`) at frequency :math:`f`
according to:
.. math::
\omega &= 2 \pi f
\tau_{\phi} &= \omega^{-1} \cdot \tan{\phi}
\tau_{M} &= \omega^{-1} \cdot \sqrt{1 / M^2 - 1}
Examples
--------
The apparent single lifetimes from phase and modulation are equal
only if the polar coordinates lie on the universal semicircle:
>>> polar_to_apparent_lifetime(
... math.pi / 4, numpy.hypot([0.5, 0.45], [0.5, 0.45]), frequency=80
... ) # doctest: +NUMBER
(array([1.989, 1.989]), array([1.989, 2.411]))
"""
omega = numpy.array(frequency, dtype=numpy.float64) # makes copy
omega *= math.pi * 2.0 * unit_conversion
return _polar_to_apparent_lifetime( # type: ignore[no-any-return]
phase, modulation, omega, **kwargs
)
[docs]
def polar_from_apparent_lifetime(
phase_lifetime: ArrayLike,
modulation_lifetime: ArrayLike | None,
/,
frequency: ArrayLike,
*,
unit_conversion: float = 1e-3,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
r"""Return polar coordinates from apparent single lifetimes.
Parameters
----------
phase_lifetime : ndarray
Apparent single lifetime from phase.
modulation_lifetime : ndarray, optional
Apparent single lifetime from modulation.
If None, `modulation_lifetime` is same as `phase_lifetime`.
frequency : array_like
Laser pulse or modulation frequency in MHz.
unit_conversion : float, optional
Product of `frequency` and `lifetime` units' prefix factors.
The default is 1e-3 for MHz and ns, or Hz and ms.
Use 1.0 for Hz and s.
**kwargs
Optional `arguments passed to numpy universal functions
<https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Returns
-------
phase : ndarray
Angular component of polar coordinates.
modulation : ndarray
Radial component of polar coordinates.
See Also
--------
phasorpy.phasor.polar_to_apparent_lifetime
Notes
-----
The apparent single lifetimes `phase_lifetime` (:math:`\tau_{\phi}`)
and `modulation_lifetime` (:math:`\tau_{M}`) are converted to polar
coordinates `phase` (:math:`\phi`) and `modulation` (:math:`M`) at
frequency :math:`f` according to:
.. math::
\omega &= 2 \pi f
\phi & = \arctan(\omega \tau_{\phi})
M &= 1 / \sqrt{1 + (\omega \tau_{M})^2}
Examples
--------
If the apparent single lifetimes from phase and modulation are equal,
the polar coordinates lie on the universal semicircle, else inside:
>>> polar_from_apparent_lifetime(
... 1.9894, [1.9894, 2.4113], frequency=80.0
... ) # doctest: +NUMBER
(array([0.7854, 0.7854]), array([0.7071, 0.6364]))
"""
omega = numpy.array(frequency, dtype=numpy.float64) # makes copy
omega *= math.pi * 2.0 * unit_conversion
if modulation_lifetime is None:
return _polar_from_single_lifetime( # type: ignore[no-any-return]
phase_lifetime, omega, **kwargs
)
return _polar_from_apparent_lifetime( # type: ignore[no-any-return]
phase_lifetime, modulation_lifetime, omega, **kwargs
)
[docs]
def phasor_from_fret_donor(
frequency: ArrayLike,
donor_lifetime: ArrayLike,
*,
fret_efficiency: ArrayLike = 0.0,
donor_freting: ArrayLike = 1.0,
donor_background: ArrayLike = 0.0,
background_real: ArrayLike = 0.0,
background_imag: ArrayLike = 0.0,
unit_conversion: float = 1e-3,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
"""Return phasor coordinates of FRET donor channel.
Calculate phasor coordinates of a FRET (Förster Resonance Energy Transfer)
donor channel as a function of frequency, donor lifetime, FRET efficiency,
fraction of donors undergoing FRET, and background fluorescence.
The phasor coordinates of the donor channel contain fractions of:
- donor not undergoing energy transfer
- donor quenched by energy transfer
- background fluorescence
Parameters
----------
frequency : array_like
Laser pulse or modulation frequency in MHz.
donor_lifetime : array_like
Lifetime of donor without FRET in ns.
fret_efficiency : array_like, optional, default 0
FRET efficiency in range [0..1].
donor_freting : array_like, optional, default 1
Fraction of donors participating in FRET. Range [0..1].
donor_background : array_like, optional, default 0
Weight of background fluorescence in donor channel
relative to fluorescence of donor without FRET.
A weight of 1 means the fluorescence of background and donor
without FRET are equal.
background_real : array_like, optional, default 0
Real component of background fluorescence phasor coordinate
at `frequency`.
background_imag : array_like, optional, default 0
Imaginary component of background fluorescence phasor coordinate
at `frequency`.
unit_conversion : float, optional
Product of `frequency` and `lifetime` units' prefix factors.
The default is 1e-3 for MHz and ns, or Hz and ms.
Use 1.0 for Hz and s.
**kwargs
Optional `arguments passed to numpy universal functions
<https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Returns
-------
real : ndarray
Real component of donor channel phasor coordinates.
imag : ndarray
Imaginary component of donor channel phasor coordinates.
See Also
--------
phasorpy.phasor.phasor_from_fret_acceptor
:ref:`sphx_glr_tutorials_api_phasorpy_fret.py`
Examples
--------
Compute the phasor coordinates of a FRET donor channel at three
FRET efficiencies:
>>> phasor_from_fret_donor(
... frequency=80,
... donor_lifetime=4.2,
... fret_efficiency=[0.0, 0.3, 1.0],
... donor_freting=0.9,
... donor_background=0.1,
... background_real=0.11,
... background_imag=0.12,
... ) # doctest: +NUMBER
(array([0.1766, 0.2737, 0.1466]), array([0.3626, 0.4134, 0.2534]))
"""
omega = numpy.array(frequency, dtype=numpy.float64) # makes copy
omega *= math.pi * 2.0 * unit_conversion
return _phasor_from_fret_donor( # type: ignore[no-any-return]
omega,
donor_lifetime,
fret_efficiency,
donor_freting,
donor_background,
background_real,
background_imag,
**kwargs,
)
[docs]
def phasor_from_fret_acceptor(
frequency: ArrayLike,
donor_lifetime: ArrayLike,
acceptor_lifetime: ArrayLike,
*,
fret_efficiency: ArrayLike = 0.0,
donor_freting: ArrayLike = 1.0,
donor_bleedthrough: ArrayLike = 0.0,
acceptor_bleedthrough: ArrayLike = 0.0,
acceptor_background: ArrayLike = 0.0,
background_real: ArrayLike = 0.0,
background_imag: ArrayLike = 0.0,
unit_conversion: float = 1e-3,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
"""Return phasor coordinates of FRET acceptor channel.
Calculate phasor coordinates of a FRET (Förster Resonance Energy Transfer)
acceptor channel as a function of frequency, donor and acceptor lifetimes,
FRET efficiency, fraction of donors undergoing FRET, fraction of directly
excited acceptors, fraction of donor fluorescence in acceptor channel,
and background fluorescence.
The phasor coordinates of the acceptor channel contain fractions of:
- acceptor sensitized by energy transfer
- directly excited acceptor
- donor bleedthrough
- background fluorescence
Parameters
----------
frequency : array_like
Laser pulse or modulation frequency in MHz.
donor_lifetime : array_like
Lifetime of donor without FRET in ns.
acceptor_lifetime : array_like
Lifetime of acceptor in ns.
fret_efficiency : array_like, optional, default 0
FRET efficiency in range [0..1].
donor_freting : array_like, optional, default 1
Fraction of donors participating in FRET. Range [0..1].
donor_bleedthrough : array_like, optional, default 0
Weight of donor fluorescence in acceptor channel
relative to fluorescence of fully sensitized acceptor.
A weight of 1 means the fluorescence from donor and fully sensitized
acceptor are equal.
The background in the donor channel does not bleed through.
acceptor_bleedthrough : array_like, optional, default 0
Weight of fluorescence from directly excited acceptor
relative to fluorescence of fully sensitized acceptor.
A weight of 1 means the fluorescence from directly excited acceptor
and fully sensitized acceptor are equal.
acceptor_background : array_like, optional, default 0
Weight of background fluorescence in acceptor channel
relative to fluorescence of fully sensitized acceptor.
A weight of 1 means the fluorescence of background and fully
sensitized acceptor are equal.
background_real : array_like, optional, default 0
Real component of background fluorescence phasor coordinate
at `frequency`.
background_imag : array_like, optional, default 0
Imaginary component of background fluorescence phasor coordinate
at `frequency`.
unit_conversion : float, optional
Product of `frequency` and `lifetime` units' prefix factors.
The default is 1e-3 for MHz and ns, or Hz and ms.
Use 1.0 for Hz and s.
**kwargs
Optional `arguments passed to numpy universal functions
<https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Returns
-------
real : ndarray
Real component of acceptor channel phasor coordinates.
imag : ndarray
Imaginary component of acceptor channel phasor coordinates.
See Also
--------
phasorpy.phasor.phasor_from_fret_donor
:ref:`sphx_glr_tutorials_api_phasorpy_fret.py`
Examples
--------
Compute the phasor coordinates of a FRET acceptor channel at three
FRET efficiencies:
>>> phasor_from_fret_acceptor(
... frequency=80,
... donor_lifetime=4.2,
... acceptor_lifetime=3.0,
... fret_efficiency=[0.0, 0.3, 1.0],
... donor_freting=0.9,
... donor_bleedthrough=0.1,
... acceptor_bleedthrough=0.1,
... acceptor_background=0.1,
... background_real=0.11,
... background_imag=0.12,
... ) # doctest: +NUMBER
(array([0.1996, 0.05772, 0.2867]), array([0.3225, 0.3103, 0.4292]))
"""
omega = numpy.array(frequency, dtype=numpy.float64) # makes copy
omega *= math.pi * 2.0 * unit_conversion
return _phasor_from_fret_acceptor( # type: ignore[no-any-return]
omega,
donor_lifetime,
acceptor_lifetime,
fret_efficiency,
donor_freting,
donor_bleedthrough,
acceptor_bleedthrough,
acceptor_background,
background_real,
background_imag,
**kwargs,
)
[docs]
def phasor_to_principal_plane(
real: ArrayLike,
imag: ArrayLike,
/,
*,
reorient: bool = True,
) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]:
"""Return multi-harmonic phasor coordinates projected onto principal plane.
Principal Component Analysis (PCA) is used to project
multi-harmonic phasor coordinates onto a plane, along which
coordinate axes the phasor coordinates have the largest variations.
The transformed coordinates are not phasor coordinates. However, the
coordinates can be used in visualization and cursor analysis since
the transformation is affine (preserving collinearity and ratios
of distances).
Parameters
----------
real : array_like
Real component of multi-harmonic phasor coordinates.
The first axis is the frequency dimension.
If less than 2-dimensional, size-1 dimensions are prepended.
imag : array_like
Imaginary component of multi-harmonic phasor coordinates.
Must be of same shape as `real`.
reorient : bool, optional, default: True
Reorient coordinates for easier visualization.
The projected coordinates are rotated and scaled, such that
the center lies in same quadrant and the projection
of [1, 0] lies at [1, 0].
Returns
-------
x : ndarray
X-coordinates of projected phasor coordinates.
If not `reorient`, this is the coordinate on the first principal axis.
The shape is ``real.shape[1:]``.
y : ndarray
Y-coordinates of projected phasor coordinates.
If not `reorient`, this is the coordinate on the second principal axis.
transformation_matrix : ndarray
Affine transformation matrix used to project phasor coordinates.
The shape is ``(2, 2 * real.shape[0])``.
See Also
--------
:ref:`sphx_glr_tutorials_api_phasorpy_pca.py`
Notes
-----
This implementation does not work with coordinates containing
undefined `NaN` values.
The transformation matrix can be used to project multi-harmonic phasor
coordinates, where the first axis is the frequency:
.. code-block:: python
x, y = numpy.dot(
numpy.vstack(
real.reshape(real.shape[0], -1),
imag.reshape(imag.shape[0], -1),
),
transformation_matrix,
).reshape(2, *real.shape[1:])
An application of PCA to full-harmonic phasor coordinates from MRI signals
can be found in [1]_.
References
----------
.. [1] Franssen WMJ, Vergeldt FJ, Bader AN, van Amerongen H, & Terenzi C.
`Full-harmonics phasor analysis: unravelling multiexponential trends
in magnetic resonance imaging data
<https://doi.org/10.1021/acs.jpclett.0c02319>`_.
*J Phys Chem Lett*, 11(21): 9152-9158 (2020)
Examples
--------
The phasor coordinates of multi-exponential decays may be almost
indistinguishable at certain frequencies but are separated in the
projection on the principal plane:
>>> real = [[0.495, 0.502], [0.354, 0.304]]
>>> imag = [[0.333, 0.334], [0.301, 0.349]]
>>> x, y, transformation_matrix = phasor_to_principal_plane(real, imag)
>>> x, y # doctest: +SKIP
(array([0.294, 0.262]), array([0.192, 0.242]))
>>> transformation_matrix # doctest: +SKIP
array([[0.67, 0.33, -0.09, -0.41], [0.52, -0.52, -0.04, 0.44]])
"""
re, im = numpy.atleast_2d(real, imag)
if re.shape != im.shape:
raise ValueError(f'real={re.shape} != imag={im.shape}')
# reshape to variables in row, observations in column
frequencies = re.shape[0]
shape = re.shape[1:]
re = re.reshape(re.shape[0], -1)
im = im.reshape(im.shape[0], -1)
# vector of multi-frequency phasor coordinates
coordinates = numpy.vstack((re, im))
# vector of centered coordinates
center = numpy.nanmean(coordinates, axis=1, keepdims=True)
coordinates -= center
# covariance matrix (scatter matrix would also work)
cov = numpy.cov(coordinates, rowvar=True)
# calculate eigenvectors
_, eigvec = numpy.linalg.eigh(cov)
# projection matrix: two eigenvectors with largest eigenvalues
transformation_matrix = eigvec.T[-2:][::-1]
if reorient:
# for single harmonic, this should restore original coordinates.
# 1. rotate and scale such that projection of [1, 0] lies at [1, 0]
x, y = numpy.dot(
transformation_matrix,
numpy.vstack(([[1.0]] * frequencies, [[0.0]] * frequencies)),
)
x = x.item()
y = y.item()
angle = -math.atan2(y, x)
if angle < 0:
angle += 2.0 * math.pi
cos = math.cos(angle)
sin = math.sin(angle)
transformation_matrix = numpy.dot(
[[cos, -sin], [sin, cos]], transformation_matrix
)
scale_factor = 1.0 / math.hypot(x, y)
transformation_matrix = numpy.dot(
[[scale_factor, 0], [0, scale_factor]], transformation_matrix
)
# 2. mirror such that projected center lies in same quadrant
cs = math.copysign
x, y = numpy.dot(transformation_matrix, center)
x = x.item()
y = y.item()
transformation_matrix = numpy.dot(
[
[-1 if cs(1, x) != cs(1, center[0][0]) else 1, 0],
[0, -1 if cs(1, y) != cs(1, center[1][0]) else 1],
],
transformation_matrix,
)
# project multi-frequency phasor coordinates onto principal plane
coordinates += center
coordinates = numpy.dot(transformation_matrix, coordinates)
return (
coordinates[0].reshape(shape), # x coordinates
coordinates[1].reshape(shape), # y coordinates
transformation_matrix,
)
[docs]
def phasor_filter(
real: ArrayLike,
imag: ArrayLike,
/,
*,
method: Literal['median', 'median_scipy'] = 'median',
repeat: int = 1,
size: int = 3,
skip_axis: int | Sequence[int] | None = None,
num_threads: int | None = None,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
"""Return filtered phasor coordinates.
By default, a median filter is applied independently to the real and
imaginary components of phasor coordinates once with a kernel size of 3
multiplied by the number of dimensions of the input arrays.
Parameters
----------
real : array_like
Real component of phasor coordinates to be filtered.
imag : array_like
Imaginary component of phasor coordinates to be filtered.
method : str, optional
Method used for filtering:
- ``'median'``: Spatial median of phasor coordinates.
- ``'median_scipy'``: Spatial median of phasor coordinates
based on :py:func:`scipy.ndimage.median_filter`.
repeat : int, optional
Number of times to apply filter. The default is 1.
size : int, optional
Size of filter kernel. The default is 3.
skip_axis : int or sequence of int, optional
Axis or axes to skip filtering. By default all axes are filtered.
num_threads : int, optional
Number of OpenMP threads to use for parallelization.
Applies to filtering in two dimensions with the `median` method only.
By default, multi-threading is disabled.
If zero, up to half of logical CPUs are used.
OpenMP may not be available on all platforms.
**kwargs
Optional arguments passed to :py:func:`scipy.ndimage.median_filter`.
Returns
-------
real : ndarray
Filtered real component of phasor coordinates.
imag : ndarray
Filtered imaginary component of phasor coordinates.
Raises
------
ValueError
If the specified method is not supported.
If `repeat` is less than 0.
If `size` is less than 1.
The array shapes of `real` and `imag` do not match.
Notes
-----
Additional filtering methods may be added in the future.
The `median` method ignores `NaN` values. If the kernel contains an even
number of elements, the median is the average of the two middle elements.
The implementation of the `median_scipy` method is based on
:py:func:`scipy.ndimage.median_filter`,
which has undefined behavior if the input arrays contain `NaN` values.
See `issue #87 <https://github.com/phasorpy/phasorpy/issues/87>`_.
When filtering in more than two dimensions, the `median` method is
slower than the `median_scipy` method. When filtering in two
dimensions, both methods have similar performance.
Examples
--------
Apply three times a median filter with a kernel size of three:
>>> phasor_filter(
... [[0, 0, 0], [5, 5, 5], [2, 2, 2]],
... [[3, 3, 3], [6, math.nan, 6], [4, 4, 4]],
... size=3,
... repeat=3,
... )
(array([[0, 0, 0],
[2, 2, 2],
[2, 2, 2]]),
array([[3, 3, 3],
[4, nan, 4],
[4, 4, 4]]))
"""
methods: dict[str, Callable[..., Any]] = {
'median': _median_filter,
'median_scipy': _median_filter_scipy,
}
if method not in methods:
raise ValueError(
f'Method not supported, supported methods are: '
f"{', '.join(methods)}"
)
if repeat == 0 or size == 1:
return numpy.asarray(real), numpy.asarray(imag)
if repeat < 0:
raise ValueError(f'{repeat=} < 0')
if size < 1:
raise ValueError(f'{size=} < 1')
real = numpy.asarray(real)
imag = numpy.asarray(imag)
if real.shape != imag.shape:
raise ValueError(f'{real.shape=} != {imag.shape=}')
_, axes = _parse_skip_axis(skip_axis, real.ndim)
if 'axes' in kwargs and method == 'median_scipy':
axes = kwargs.pop('axes')
if method == 'median':
kwargs['num_threads'] = num_threads
return methods[method]( # type: ignore[no-any-return]
real, imag, axes, repeat=repeat, size=size, **kwargs
)
[docs]
def phasor_threshold(
mean: ArrayLike,
real: ArrayLike,
imag: ArrayLike,
/,
mean_min: ArrayLike | None = None,
mean_max: ArrayLike | None = None,
*,
real_min: ArrayLike | None = None,
real_max: ArrayLike | None = None,
imag_min: ArrayLike | None = None,
imag_max: ArrayLike | None = None,
phase_min: ArrayLike | None = None,
phase_max: ArrayLike | None = None,
modulation_min: ArrayLike | None = None,
modulation_max: ArrayLike | None = None,
open_interval: bool = False,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]:
"""Return phasor coordinates with values out of interval replaced by NaN.
Interval thresholds can be set for mean intensity, real and imaginary
coordinates, and phase and modulation.
Phasor coordinates smaller than minimum thresholds or larger than maximum
thresholds are replaced NaN.
No threshold is applied by default.
Parameters
----------
mean : array_like
Mean intensity of phasor coordinates.
real : array_like
Real component of phasor coordinates.
imag : array_like
Imaginary component of phasor coordinates.
mean_min : array_like, optional
Lower threshold for mean intensity.
mean_max : array_like, optional
Upper threshold for mean intensity.
real_min : array_like, optional
Lower threshold for real coordinates.
real_max : array_like, optional
Upper threshold for real coordinates.
imag_min : array_like, optional
Lower threshold for imaginary coordinates.
imag_max : array_like, optional
Upper threshold for imaginary coordinates.
phase_min : array_like, optional
Lower threshold for phase angle.
phase_max : array_like, optional
Upper threshold for phase angle.
modulation_min : array_like, optional
Lower threshold for modulation.
modulation_max : array_like, optional
Upper threshold for modulation.
open_interval : bool, optional
If true, the interval is open, and the threshold values are
not included in the interval.
If False, the interval is closed, and the threshold values are
included in the interval. The default is False.
**kwargs
Optional `arguments passed to numpy universal functions
<https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Returns
-------
mean : ndarray
Thresholded mean intensity of phasor coordinates.
real : ndarray
Thresholded real component of phasor coordinates.
imag : ndarray
Thresholded imaginary component of phasor coordinates.
Examples
--------
Set phasor coordinates to NaN if mean intensity is smaller than 1.1:
>>> phasor_threshold([1, 2, 3], [0.1, 0.2, 0.3], [0.4, 0.5, 0.6], 1.1)
(array([nan, 2, 3]), array([nan, 0.2, 0.3]), array([nan, 0.5, 0.6]))
Set phasor coordinates to NaN if real component is smaller than 0.15 or
larger than 0.25:
>>> phasor_threshold(
... [1.0, 2.0, 3.0],
... [0.1, 0.2, 0.3],
... [0.4, 0.5, 0.6],
... real_min=0.15,
... real_max=0.25,
... )
(array([nan, 2, nan]), array([nan, 0.2, nan]), array([nan, 0.5, nan]))
Apply NaNs to other input arrays:
>>> phasor_threshold(
... [numpy.nan, 2, 3], [0.1, 0.2, 0.3], [0.4, 0.5, numpy.nan]
... )
(array([nan, 2, nan]), array([nan, 0.2, nan]), array([nan, 0.5, nan]))
"""
threshold_mean_only = None
if mean_min is None:
mean_min = numpy.nan
else:
threshold_mean_only = True
if mean_max is None:
mean_max = numpy.nan
else:
threshold_mean_only = True
if real_min is None:
real_min = numpy.nan
else:
threshold_mean_only = False
if real_max is None:
real_max = numpy.nan
else:
threshold_mean_only = False
if imag_min is None:
imag_min = numpy.nan
else:
threshold_mean_only = False
if imag_max is None:
imag_max = numpy.nan
else:
threshold_mean_only = False
if phase_min is None:
phase_min = numpy.nan
else:
threshold_mean_only = False
if phase_max is None:
phase_max = numpy.nan
else:
threshold_mean_only = False
if modulation_min is None:
modulation_min = numpy.nan
else:
threshold_mean_only = False
if modulation_max is None:
modulation_max = numpy.nan
else:
threshold_mean_only = False
if threshold_mean_only is None:
return _phasor_threshold_nan( # type: ignore[no-any-return]
mean, real, imag, **kwargs
)
if threshold_mean_only:
mean_func = (
_phasor_threshold_mean_open
if open_interval
else _phasor_threshold_mean_closed
)
return mean_func( # type: ignore[no-any-return]
mean, real, imag, mean_min, mean_max, **kwargs
)
func = (
_phasor_threshold_open if open_interval else _phasor_threshold_closed
)
return func( # type: ignore[no-any-return]
mean,
real,
imag,
mean_min,
mean_max,
real_min,
real_max,
imag_min,
imag_max,
phase_min,
phase_max,
modulation_min,
modulation_max,
**kwargs,
)
[docs]
def phasor_center(
real: ArrayLike,
imag: ArrayLike,
/,
*,
skip_axis: int | Sequence[int] | None = None,
method: Literal['mean', 'median'] = 'mean',
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
"""Return center of phasor coordinates.
Parameters
----------
real : array_like
Real component of phasor coordinates.
imag : array_like
Imaginary component of phasor coordinates.
skip_axis : int or sequence of int, optional
Axes to be excluded during center calculation. If None, all
axes are considered.
method : str, optional
Method used for center calculation:
- ``'mean'``: Arithmetic mean of phasor coordinates.
- ``'median'``: Spatial median of phasor coordinates.
**kwargs
Optional arguments passed to :py:func:`numpy.nanmean` or
:py:func:`numpy.nanmedian`.
Returns
-------
real_center : ndarray
Real center coordinates calculated based on the specified method.
imag_center : ndarray
Imaginary center coordinates calculated based on the specified method.
Raises
------
ValueError
If the specified method is not supported.
If the shapes of the `real` and `imag` do not match.
Examples
--------
Compute center coordinates with the 'mean' method:
>>> phasor_center([1.0, 2.0, 3.0], [4.0, 5.0, 6.0], method='mean')
(2.0, 5.0)
Compute center coordinates with the 'median' method:
>>> phasor_center([1.0, 2.0, 3.0], [4.0, 5.0, 6.0], method='median')
(2.0, 5.0)
"""
methods = {
'mean': _mean,
'median': _median,
}
if method not in methods:
raise ValueError(
f'Method not supported, supported methods are: '
f"{', '.join(methods)}"
)
real = numpy.asarray(real)
imag = numpy.asarray(imag)
if real.shape != imag.shape:
raise ValueError(f'{real.shape=} != {imag.shape=}')
_, axis = _parse_skip_axis(skip_axis, real.ndim)
return methods[method](real, imag, axis=axis, **kwargs)
def _mean(
real: NDArray[Any], imag: NDArray[Any], /, **kwargs: Any
) -> tuple[NDArray[Any], NDArray[Any]]:
"""Return the mean center of phasor coordinates.
Parameters
----------
real : ndarray
Real components of phasor coordinates.
imag : ndarray
Imaginary components of phasor coordinates.
**kwargs
Optional arguments passed to :py:func:`numpy.nanmean`.
Returns
-------
real_center : ndarray
Mean real center coordinates.
imag_center : ndarray
Mean imaginary center coordinates.
Examples
--------
>>> _mean([1.0, 2.0, 3.0], [4.0, 5.0, 6.0])
(2.0, 5.0)
"""
return numpy.nanmean(real, **kwargs), numpy.nanmean(imag, **kwargs)
def _median(
real: NDArray[Any], imag: NDArray[Any], /, **kwargs: Any
) -> tuple[NDArray[Any], NDArray[Any]]:
"""Return the spatial median center of phasor coordinates.
Parameters
----------
real : ndarray
Real components of phasor coordinates.
imag : ndarray
Imaginary components of phasor coordinates.
**kwargs
Optional arguments passed to :py:func:`numpy.nanmedian`.
Returns
-------
real_center : ndarray
Spatial median center of real coordinates.
imag_center : ndarray
Spatial median center of imaginary coordinates.
Examples
--------
>>> _median([1.0, 2.0, 3.0], [4.0, 5.0, 6.0])
(2.0, 5.0)
"""
return numpy.nanmedian(real, **kwargs), numpy.nanmedian(imag, **kwargs)
def _median_filter(
real: NDArray[Any],
imag: NDArray[Any],
axes: Sequence[int],
/,
*,
repeat: int = 1,
size: int = 3,
num_threads: int | None = None,
) -> tuple[NDArray[Any], NDArray[Any]]:
"""Return median-filtered phasor coordinates, ignoring NaN values.
Parameters
----------
real : ndarray
Real components of phasor coordinates.
imag : ndarray
Imaginary components of phasor coordinates.
axes : sequence of int
Axes along which to apply median filter.
repeat : int, optional
Number of times to apply filter. The default is 1.
size : int, optional
Size of median filter kernel. The default is 3.
num_threads : int, optional
Number of OpenMP threads to use for parallelization.
By default, multi-threading is disabled.
If zero, up to half of logical CPUs are used.
OpenMP may not be available on all platforms.
Returns
-------
real : ndarray
Median-filtered real component of phasor coordinates.
imag : ndarray
Median-filtered imaginary component of phasor coordinates.
"""
real = numpy.asarray(real)
if real.dtype == numpy.float32:
real = real.copy()
else:
real = real.astype(float)
imag = numpy.asarray(imag)
if imag.dtype == numpy.float32:
imag = imag.copy()
else:
imag = imag.astype(float)
if len(axes) != 2:
# n-dimensional median filter using numpy
from numpy.lib.stride_tricks import sliding_window_view
kernel_shape = tuple(
size if i in axes else 1 for i in range(real.ndim)
)
pad_width = [
(s // 2, s // 2) if s > 1 else (0, 0) for s in kernel_shape
]
axis = tuple(range(-real.ndim, 0))
nan_mask = numpy.isnan(real)
for _ in range(repeat):
real = numpy.pad(real, pad_width, mode='edge')
real = sliding_window_view(real, kernel_shape)
real = numpy.nanmedian(real, axis=axis)
real = numpy.where(nan_mask, numpy.nan, real)
nan_mask = numpy.isnan(imag)
for _ in range(repeat):
imag = numpy.pad(imag, pad_width, mode='edge')
imag = sliding_window_view(imag, kernel_shape)
imag = numpy.nanmedian(imag, axis=axis)
imag = numpy.where(nan_mask, numpy.nan, imag)
return real, imag
# 2-dimensional median filter using optimized Cython implementation
num_threads = number_threads(num_threads)
filtered_slice = numpy.empty(
tuple(real.shape[axis] for axis in axes), dtype=real.dtype
)
for index in numpy.ndindex(
*[real.shape[ax] for ax in range(real.ndim) if ax not in axes]
):
index_list: list[int | slice] = list(index)
for ax in axes:
index_list = index_list[:ax] + [slice(None)] + index_list[ax:]
full_index = tuple(index_list)
_median_filter_2d(
real[full_index], filtered_slice, size, repeat, num_threads
)
_median_filter_2d(
imag[full_index], filtered_slice, size, repeat, num_threads
)
return real, imag
def _median_filter_scipy(
real: NDArray[Any],
imag: NDArray[Any],
axes: Sequence[int],
/,
*,
repeat: int = 1,
size: int = 3,
**kwargs: Any,
) -> tuple[NDArray[Any], NDArray[Any]]:
"""Return median-filtered phasor coordinates.
Convenience wrapper around :py:func:`scipy.ndimage.median_filter`.
Parameters
----------
real : ndarray
Real components of phasor coordinates.
imag : ndarray
Imaginary components of phasor coordinates.
axes : sequence of int
Axes along which to apply median filter.
repeat : int, optional
Number of times to apply filter. The default is 1.
size : int, optional
Size of median filter kernel. The default is 3.
**kwargs
Optional arguments passed to :py:func:`scipy.ndimage.median_filter`.
Returns
-------
real : ndarray
Median-filtered real component of phasor coordinates.
imag : ndarray
Median-filtered imaginary component of phasor coordinates.
"""
from scipy.ndimage import median_filter
real = numpy.asarray(real)
imag = numpy.asarray(imag)
for _ in range(repeat):
real = median_filter(real, size=size, axes=axes, **kwargs)
imag = median_filter(imag, size=size, axes=axes, **kwargs)
return numpy.asarray(real), numpy.asarray(imag)
def _parse_skip_axis(
skip_axis: int | Sequence[int] | None,
/,
ndim: int,
) -> tuple[tuple[int, ...], tuple[int, ...]]:
"""Return axes to skip and not to skip.
This helper function is used to validate and parse `skip_axis`
parameters.
Parameters
----------
skip_axis : Sequence of int, or None
Axes to skip. If None, no axes are skipped.
ndim : int
Dimensionality of array in which to skip axes.
Returns
-------
skip_axis
Ordered, positive values of `skip_axis`.
other_axis
Axes indices not included in `skip_axis`.
Raises
------
IndexError
If any `skip_axis` value is out of bounds of `ndim`.
Examples
--------
>>> _parse_skip_axis((1, -2), 5)
((1, 3), (0, 2, 4))
"""
if ndim < 0:
raise ValueError(f'invalid {ndim=}')
if skip_axis is None:
return (), tuple(range(ndim))
if not isinstance(skip_axis, Sequence):
skip_axis = (skip_axis,)
if any(i >= ndim or i < -ndim for i in skip_axis):
raise IndexError(f'skip_axis={skip_axis} out of range for {ndim=}')
skip_axis = tuple(sorted(int(i % ndim) for i in skip_axis))
other_axis = tuple(i for i in range(ndim) if i not in skip_axis)
return skip_axis, other_axis