Source code for phasorpy.io

"""Read and write time-resolved and hyperspectral image file formats.

The ``phasorpy.io`` module provides functions to:

- read and write phasor coordinate images in OME-TIFF format, which can be
  imported in Bio-Formats and Fiji:

  - :py:func:`phasor_to_ometiff`
  - :py:func:`phasor_from_ometiff`

- read and write phasor coordinate images in SimFCS referenced R64 format:

  - :py:func:`phasor_to_simfcs_referenced`
  - :py:func:`phasor_from_simfcs_referenced`

- read time-resolved and hyperspectral image data and metadata (as relevant
  to phasor analysis) from many file formats used in bio-imaging:

  - :py:func:`read_lsm` - Zeiss LSM
  - :py:func:`read_ifli` - ISS IFLI
  - :py:func:`read_sdt` - Becker & Hickl SDT
  - :py:func:`read_ptu` - PicoQuant PTU
  - :py:func:`read_fbd` - FLIMbox FBD
  - :py:func:`read_flif` - FlimFast FLIF
  - :py:func:`read_b64` - SimFCS B64
  - :py:func:`read_z64` - SimFCS Z64
  - :py:func:`read_bhz` - SimFCS BHZ
  - :py:func:`read_bh` - SimFCS B&H

  Support for other file formats is being considered:

  - OME-TIFF
  - Zeiss CZI
  - Leica LIF
  - Nikon ND2
  - Olympus OIB/OIF
  - Olympus OIR

The functions are implemented as minimal wrappers around specialized
third-party file reader libraries, currently
`tifffile <https://github.com/cgohlke/tifffile>`_,
`ptufile <https://github.com/cgohlke/ptufile>`_,
`sdtfile <https://github.com/cgohlke/sdtfile>`_, and
`lfdfiles <https://github.com/cgohlke/lfdfiles>`_.
For advanced or unsupported use cases, consider using these libraries directly.

The read functions typically have the following signature::

    read_ext(
        filename: str | PathLike,
        /,
        **kwargs
    ): -> xarray.DataArray

where ``ext`` indicates the file format and ``kwargs`` are optional arguments
passed to the underlying file reader library or used to select which data is
returned. The returned `xarray.DataArray
<https://docs.xarray.dev/en/stable/user-guide/data-structures.html>`_
contains an n-dimensional array with labeled coordinates, dimensions, and
attributes:

- ``data`` or ``values`` (*array_like*)

  Numpy array or array-like holding the array's values.

- ``dims`` (*tuple of str*)

  :ref:`Axes character codes <axes>` for each dimension in ``data``.
  For example, ``('T', 'C', 'Y', 'X')`` defines the dimension order in a
  4-dimensional array of a time-series of multi-channel images.

- ``coords`` (*dict_like[str, array_like]*)

  Coordinate arrays labelling each point in the data array.
  The keys are :ref:`axes character codes <axes>`.
  Values are 1-dimensional arrays of numbers or strings.
  For example, ``coords['C']`` could be an array of emission wavelengths.

- ``attrs`` (*dict[str, Any]*)

  Arbitrary metadata such as measurement or calibration parameters required to
  interpret the data values.
  For example, the laser repetition frequency of a time-resolved measurement.

.. _axes:

Axes character codes from the OME model and tifffile library are used as
``dims`` items and ``coords`` keys:

- ``'X'`` : width (OME)
- ``'Y'`` : height (OME)
- ``'Z'`` : depth (OME)
- ``'S'`` : sample (color components or phasor coordinates)
- ``'I'`` : sequence (of images, frames, or planes)
- ``'T'`` : time  (OME)
- ``'C'`` : channel (OME. Acquisition path or emission wavelength)
- ``'A'`` : angle (OME)
- ``'P'`` : phase (OME. In LSM, ``'P'`` maps to position)
- ``'R'`` : tile (OME. Region, position, or mosaic)
- ``'H'`` : lifetime histogram (OME)
- ``'E'`` : lambda (OME. Excitation wavelength)
- ``'F'`` : frequency (ISS)
- ``'Q'`` : other (OME. Harmonics in PhasorPy TIFF)
- ``'L'`` : exposure (FluoView)
- ``'V'`` : event (FluoView)
- ``'M'`` : mosaic (LSM 6)
- ``'J'`` : column (NDTiff)
- ``'K'`` : row (NDTiff)

"""

from __future__ import annotations

__all__ = [
    'phasor_from_ometiff',
    'phasor_from_simfcs_referenced',
    'phasor_to_ometiff',
    'phasor_to_simfcs_referenced',
    'read_b64',
    'read_bh',
    'read_bhz',
    # 'read_czi',
    'read_fbd',
    'read_flif',
    'read_ifli',
    # 'read_lif',
    'read_lsm',
    # 'read_nd2',
    # 'read_oif',
    # 'read_oir',
    # 'read_ometiff',
    'read_ptu',
    'read_sdt',
    'read_z64',
    '_squeeze_axes',
]

import logging
import os
import re
import struct
import zlib
from typing import TYPE_CHECKING

from ._utils import chunk_iter, parse_harmonic
from .phasor import phasor_from_polar, phasor_to_polar

if TYPE_CHECKING:
    from ._typing import (
        Any,
        ArrayLike,
        DataArray,
        DTypeLike,
        EllipsisType,
        Literal,
        NDArray,
        PathLike,
        Sequence,
    )

import numpy

logger = logging.getLogger(__name__)


[docs] def phasor_to_ometiff( filename: str | PathLike[Any], mean: ArrayLike, real: ArrayLike, imag: ArrayLike, /, *, frequency: float | None = None, harmonic: int | Sequence[int] | None = None, axes: str | None = None, dtype: DTypeLike | None = None, description: str | None = None, **kwargs: Any, ) -> None: """Write phasor coordinate images and metadata to OME-TIFF file. The OME-TIFF format is compatible with Bio-Formats and Fiji. By default, write phasor coordinates as single precision floating point values to separate image series. Write images larger than (1024, 1024) as (256, 256) tiles, datasets larger than 2 GB as BigTIFF, and datasets larger than 8 KB zlib-compressed. This file format is experimental and might be incompatible with future versions of this library. It is intended for temporarily exchanging phasor coordinates with other software, not as a long-term storage solution. Parameters ---------- filename : str or Path Name of OME-TIFF file to write. mean : array_like Average intensity image. Write to image series named 'Phasor mean'. real : array_like Image of real component of phasor coordinates. Multiple harmonics, if any, must be in the first dimension. Write to image series named 'Phasor real'. imag : array_like Image of imaginary component of phasor coordinates. Multiple harmonics, if any, must be in the first dimension. Write to image series named 'Phasor imag'. frequency : float, optional Fundamental frequency of time-resolved phasor coordinates. Write to image series named 'Phasor frequency'. harmonic : int or sequence of int, optional Harmonics present in the first dimension of `real` and `imag`, if any. Write to image series named 'Phasor harmonic'. Only needed if harmonics are not starting at and increasing by one. axes : str, optional Character codes for `mean` image dimensions. By default, the last dimensions are assumed to be 'TZCYX'. If harmonics are present in `real` and `imag`, an "other" (``Q``) dimension is prepended to axes for those arrays. Refer to the OME-TIFF model for allowed axes and their order. dtype : dtype-like, optional Floating point data type used to store phasor coordinates. The default is ``float32``, which has 6 digits of precision and maximizes compatibility with other software. description : str, optional Plain-text description of dataset. Write as OME dataset description. **kwargs Additional arguments passed to :py:class:`tifffile.TiffWriter` and :py:meth:`tifffile.TiffWriter.write`. For example, ``compression=None`` writes image data uncompressed. See Also -------- phasorpy.io.phasor_from_ometiff Notes ----- Scalar or one-dimensional phasor coordinate arrays are written as images. The OME-TIFF format is specified in the `OME Data Model and File Formats Documentation <https://ome-model.readthedocs.io/>`_. The `6D, 7D and 8D storage <https://ome-model.readthedocs.io/en/latest/developers/6d-7d-and-8d-storage.html>`_ extension is used to store multi-harmonic phasor coordinates. The modulo type for the first, harmonic dimension is "other". Examples -------- >>> mean, real, imag = numpy.random.rand(3, 32, 32, 32) >>> phasor_to_ometiff( ... '_phasorpy.ome.tif', mean, real, imag, axes='ZYX', frequency=80.0 ... ) """ import tifffile from .version import __version__ if dtype is None: dtype = numpy.float32 dtype = numpy.dtype(dtype) if dtype.kind != 'f': raise ValueError(f'{dtype=} not a floating point type') mean = numpy.asarray(mean, dtype) real = numpy.asarray(real, dtype) imag = numpy.asarray(imag, dtype) datasize = mean.nbytes + real.nbytes + imag.nbytes if real.shape != imag.shape: raise ValueError(f'{real.shape=} != {imag.shape=}') if mean.shape != real.shape[-mean.ndim :]: raise ValueError(f'{mean.shape=} != {real.shape[-mean.ndim:]=}') has_harmonic_dim = real.ndim == mean.ndim + 1 if mean.ndim == real.ndim or real.ndim == 0: nharmonic = 1 else: nharmonic = real.shape[0] if mean.ndim < 2: # not an image mean = mean.reshape(1, -1) if has_harmonic_dim: real = real.reshape(real.shape[0], 1, -1) imag = imag.reshape(imag.shape[0], 1, -1) else: real = real.reshape(1, -1) imag = imag.reshape(1, -1) if harmonic is not None: harmonic, _ = parse_harmonic(harmonic) if len(harmonic) != nharmonic: raise ValueError('invalid harmonic') if frequency is not None: frequency_array = numpy.atleast_2d(frequency).astype(numpy.float64) if frequency_array.size > 1: raise ValueError('frequency must be scalar') if axes is None: axes = 'TZCYX'[-mean.ndim :] else: axes = ''.join(tuple(axes)) # accept dims tuple and str if len(axes) != mean.ndim: raise ValueError(f'{axes=} does not match {mean.ndim=}') axes_phasor = axes if mean.ndim == real.ndim else 'Q' + axes if 'photometric' not in kwargs: kwargs['photometric'] = 'minisblack' if 'compression' not in kwargs and datasize > 8192: kwargs['compression'] = 'zlib' if 'tile' not in kwargs and 'rowsperstrip' not in kwargs: if ( axes.endswith('YX') and mean.shape[-1] > 1024 and mean.shape[-2] > 1024 ): kwargs['tile'] = (256, 256) mode = kwargs.pop('mode', None) bigtiff = kwargs.pop('bigtiff', None) if bigtiff is None: bigtiff = datasize > 2**31 metadata = kwargs.pop('metadata', {}) if 'Creator' not in metadata: metadata['Creator'] = f'PhasorPy {__version__}' dataset = metadata.pop('Dataset', {}) if 'Name' not in dataset: dataset['Name'] = 'Phasor' if description: dataset['Description'] = description metadata['Dataset'] = dataset if has_harmonic_dim: metadata['TypeDescription'] = {'Q': 'Phasor harmonics'} with tifffile.TiffWriter( filename, bigtiff=bigtiff, mode=mode, ome=True ) as tif: metadata['Name'] = 'Phasor mean' metadata['axes'] = axes tif.write(mean, metadata=metadata, **kwargs) del metadata['Dataset'] metadata['Name'] = 'Phasor real' metadata['axes'] = axes_phasor tif.write(real, metadata=metadata, **kwargs) metadata['Name'] = 'Phasor imag' tif.write(imag, metadata=metadata, **kwargs) if frequency is not None: tif.write(frequency_array, metadata={'Name': 'Phasor frequency'}) if harmonic is not None: tif.write( numpy.atleast_2d(harmonic).astype(numpy.uint32), metadata={'Name': 'Phasor harmonic'}, )
[docs] def phasor_from_ometiff( filename: str | PathLike[Any], /, *, harmonic: int | Sequence[int] | Literal['all'] | str | None = None, ) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any], dict[str, Any]]: """Return phasor images and metadata from OME-TIFF written by PhasorPy. Parameters ---------- filename : str or Path Name of OME-TIFF file to read. harmonic : int, sequence of int, or 'all', optional Harmonic(s) to return from file. If None (default), return the first harmonic stored in the file. If `'all'`, return all harmonics as stored in file. If a list, the first axes of the returned `real` and `imag` arrays contain specified harmonic(s). If an integer, the returned `real` and `imag` arrays are single harmonic and have the same shape as `mean`. Returns ------- mean : ndarray Average intensity image. real : ndarray Image of real component of phasor coordinates. imag : ndarray Image of imaginary component of phasor coordinates. attrs : dict Select metadata: - ``'axes'`` (str): Character codes for `mean` image dimensions. - ``'harmonic'`` (int or list of int): Harmonic(s) present in `real` and `imag`. If a scalar, `real` and `imag` are single harmonic and contain no harmonic axes. If a list, `real` and `imag` contain one or more harmonics in the first axis. - ``'frequency'`` (float, optional): Fundamental frequency of time-resolved phasor coordinates. - ``'description'`` (str, optional): OME dataset plain-text description. Raises ------ tifffile.TiffFileError File is not a TIFF file. ValueError File is not an OME-TIFF containing phasor coordinates. IndexError Requested harmonic is not found in file. See Also -------- phasorpy.io.phasor_to_ometiff Notes ----- Scalar or one-dimensional phasor coordinates stored in the file are returned as two-dimensional images (three-dimensional if multiple harmonics are present). Examples -------- >>> mean, real, imag = numpy.random.rand(3, 32, 32, 32) >>> phasor_to_ometiff( ... '_phasorpy.ome.tif', mean, real, imag, axes='ZYX', frequency=80.0 ... ) >>> mean, real, imag, attrs = phasor_from_ometiff('_phasorpy.ome.tif') >>> mean array(...) >>> mean.dtype dtype('float32') >>> mean.shape (32, 32, 32) >>> attrs['axes'] 'ZYX' >>> attrs['frequency'] 80.0 >>> attrs['harmonic'] 1 """ import tifffile name = os.path.basename(filename) with tifffile.TiffFile(filename) as tif: if ( not tif.is_ome or len(tif.series) < 3 or tif.series[0].name != 'Phasor mean' or tif.series[1].name != 'Phasor real' or tif.series[2].name != 'Phasor imag' ): raise ValueError( f'{name!r} is not an OME-TIFF containing phasor images' ) attrs: dict[str, Any] = {'axes': tif.series[0].axes} # TODO: read coords from OME-XML ome_xml = tif.ome_metadata assert ome_xml is not None # TODO: parse OME-XML match = re.search( r'><Description>(.*)</Description><', ome_xml, re.MULTILINE | re.DOTALL, ) if match is not None: attrs['description'] = ( match.group(1) .replace('&amp;', '&') .replace('&gt;', '>') .replace('&lt;', '<') ) has_harmonic_dim = tif.series[1].ndim > tif.series[0].ndim nharmonics = tif.series[1].shape[0] if has_harmonic_dim else 1 harmonic_max = nharmonics for i in (3, 4): if len(tif.series) < i + 1: break series = tif.series[i] data = series.asarray().squeeze() if series.name == 'Phasor frequency': attrs['frequency'] = float(data.item(0)) elif series.name == 'Phasor harmonic': if not has_harmonic_dim and data.size == 1: attrs['harmonic'] = int(data.item(0)) harmonic_max = attrs['harmonic'] elif has_harmonic_dim and data.size == nharmonics: attrs['harmonic'] = data.tolist() harmonic_max = max(attrs['harmonic']) else: logger.warning( f'harmonic={data} does not match phasor ' f'shape={tif.series[1].shape}' ) if 'harmonic' not in attrs: if has_harmonic_dim: attrs['harmonic'] = list(range(1, nharmonics + 1)) else: attrs['harmonic'] = 1 harmonic_stored = attrs['harmonic'] mean = tif.series[0].asarray() if harmonic is None: # first harmonic in file if isinstance(harmonic_stored, list): attrs['harmonic'] = harmonic_stored[0] else: attrs['harmonic'] = harmonic_stored real = tif.series[1].asarray() if has_harmonic_dim: real = real[0].copy() imag = tif.series[2].asarray() if has_harmonic_dim: imag = imag[0].copy() elif isinstance(harmonic, str) and harmonic == 'all': # all harmonics as stored in file real = tif.series[1].asarray() imag = tif.series[2].asarray() else: # specified harmonics harmonic, keepdims = parse_harmonic(harmonic, harmonic_max) try: if isinstance(harmonic_stored, list): index = [harmonic_stored.index(h) for h in harmonic] else: index = [[harmonic_stored].index(h) for h in harmonic] except ValueError as exc: raise IndexError('harmonic not found') from exc if has_harmonic_dim: if keepdims: attrs['harmonic'] = [harmonic_stored[i] for i in index] real = tif.series[1].asarray()[index].copy() imag = tif.series[2].asarray()[index].copy() else: attrs['harmonic'] = harmonic_stored[index[0]] real = tif.series[1].asarray()[index[0]].copy() imag = tif.series[2].asarray()[index[0]].copy() elif keepdims: real = tif.series[1].asarray() real = real.reshape(1, *real.shape) imag = tif.series[2].asarray() imag = imag.reshape(1, *imag.shape) attrs['harmonic'] = [harmonic_stored] else: real = tif.series[1].asarray() imag = tif.series[2].asarray() if real.shape != imag.shape: logger.warning(f'{real.shape=} != {imag.shape=}') if real.shape[-mean.ndim :] != mean.shape: logger.warning(f'{real.shape[-mean.ndim:]=} != {mean.shape=}') return mean, real, imag, attrs
[docs] def phasor_to_simfcs_referenced( filename: str | PathLike[Any], mean: ArrayLike, real: ArrayLike, imag: ArrayLike, /, *, size: int | None = None, axes: str | None = None, ) -> None: """Write phasor coordinate images to SimFCS referenced R64 file(s). SimFCS referenced R64 files store square-shaped (commonly 256x256) images of the average intensity, and the calibrated phasor coordinates (encoded as phase and modulation) of two harmonics as ZIP-compressed, single precision floating point arrays. The file format does not support any metadata. Images with more than two dimensions or larger than square size are chunked to square-sized images and saved to separate files with a name pattern, for example, "filename_T099_Y256_X000.r64". Images or chunks with less than two dimensions or smaller than square size are padded with NaN values. Parameters ---------- filename : str or Path Name of SimFCS referenced R64 file to write. The file extension must be ``.r64``. mean : array_like Average intensity image. real : array_like Image of real component of calibrated phasor coordinates. Multiple harmonics, if any, must be in the first dimension. Harmonics must be starting at and increasing by one. imag : array_like Image of imaginary component of calibrated phasor coordinates. Multiple harmonics, if any, must be in the first dimension. Harmonics must be starting at and increasing by one. size : int, optional Size of X and Y dimensions of square-sized images stored in file. By default, ``size = min(256, max(4, sizey, sizex))``. axes : str, optional Character codes for `mean` dimensions used to format file names. See Also -------- phasorpy.io.phasor_from_simfcs_referenced Examples -------- >>> mean, real, imag = numpy.random.rand(3, 32, 32) >>> phasor_to_simfcs_referenced('_phasorpy.r64', mean, real, imag) """ filename, ext = os.path.splitext(filename) if ext.lower() != '.r64': raise ValueError(f'file extension {ext} != .r64') # TODO: delay conversions to numpy arrays to inner loop mean = numpy.asarray(mean, numpy.float32) phi, mod = phasor_to_polar(real, imag, dtype=numpy.float32) del real del imag phi = numpy.rad2deg(phi) if phi.shape != mod.shape: raise ValueError(f'{phi.shape=} != {mod.shape=}') if mean.shape != phi.shape[-mean.ndim :]: raise ValueError(f'{mean.shape=} != {phi.shape[-mean.ndim:]=}') if phi.ndim == mean.ndim: phi = phi.reshape(1, *phi.shape) mod = mod.reshape(1, *mod.shape) nharmonic = phi.shape[0] if mean.ndim < 2: # not an image mean = mean.reshape(1, -1) phi = phi.reshape(nharmonic, 1, -1) mod = mod.reshape(nharmonic, 1, -1) # TODO: investigate actual size and harmonics limits of SimFCS sizey, sizex = mean.shape[-2:] if size is None: size = min(256, max(4, sizey, sizex)) elif not 4 <= size <= 65535: raise ValueError(f'{size=} out of range [4..65535]') harmonics_per_file = 2 # TODO: make this a parameter? chunk_shape = tuple( [max(harmonics_per_file, 2)] + ([1] * (phi.ndim - 3)) + [size, size] ) multi_file = any(i / j > 1 for i, j in zip(phi.shape, chunk_shape)) if axes is not None and len(axes) == phi.ndim - 1: axes = 'h' + axes chunk = numpy.empty((size, size), dtype=numpy.float32) def rawdata_append( rawdata: list[bytes], a: NDArray[Any] | None = None ) -> None: if a is None: chunk[:] = numpy.nan rawdata.append(chunk.tobytes()) else: sizey, sizex = a.shape[-2:] if sizey == size and sizex == size: rawdata.append(a.tobytes()) elif sizey <= size and sizex <= size: chunk[:sizey, :sizex] = a[..., :sizey, :sizex] chunk[sizey:, sizex:] = numpy.nan rawdata.append(chunk.tobytes()) else: raise RuntimeError # should not be reached for index, label, _ in chunk_iter( phi.shape, chunk_shape, axes, squeeze=False, use_index=True ): rawdata = [struct.pack('I', size)] rawdata_append(rawdata, mean[index[1:]]) phi_ = phi[index] mod_ = mod[index] for i in range(phi_.shape[0]): rawdata_append(rawdata, phi_[i]) rawdata_append(rawdata, mod_[i]) if phi_.shape[0] == 1: rawdata_append(rawdata) rawdata_append(rawdata) if not multi_file: label = '' with open(filename + label + ext, 'wb') as fh: fh.write(zlib.compress(b''.join(rawdata)))
[docs] def phasor_from_simfcs_referenced( filename: str | PathLike[Any], /, *, harmonic: int | Sequence[int] | Literal['all'] | str | None = None, ) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]: """Return phasor coordinate images from SimFCS referenced (REF, R64) file. SimFCS referenced REF and R64 files contain phasor coordinate images (encoded as phase and modulation) for two harmonics. Phasor coordinates from lifetime-resolved signals are calibrated. Parameters ---------- filename : str or Path Name of REF or R64 file to read. harmonic : int or sequence of int, optional Harmonic(s) to include in returned phasor coordinates. By default, only the first harmonic is returned. Returns ------- mean : ndarray Average intensity image. real : ndarray Image of real component of phasor coordinates. Multiple harmonics, if any, are in the first axis. imag : ndarray Image of imaginary component of phasor coordinates. Multiple harmonics, if any, are in the first axis. Raises ------ lfdfiles.LfdfileError File is not a SimFCS REF or R64 file. See Also -------- phasorpy.io.phasor_to_simfcs_referenced Examples -------- >>> phasor_to_simfcs_referenced( ... '_phasorpy.r64', *numpy.random.rand(3, 32, 32) ... ) >>> mean, real, imag = phasor_from_simfcs_referenced('_phasorpy.r64') >>> mean array([[...]], dtype=float32) """ import lfdfiles ext = os.path.splitext(filename)[-1].lower() if ext == '.r64': with lfdfiles.SimfcsR64(filename) as r64: data = r64.asarray() elif ext == '.ref': with lfdfiles.SimfcsRef(filename) as ref: data = ref.asarray() else: raise ValueError(f'file extension must be .ref or .r64, not {ext!r}') harmonic, keep_harmonic_dim = parse_harmonic(harmonic, data.shape[0] // 2) mean = data[0].copy() real = numpy.empty((len(harmonic),) + mean.shape, numpy.float32) imag = numpy.empty_like(real) for i, h in enumerate(harmonic): h = (h - 1) * 2 + 1 re, im = phasor_from_polar(numpy.deg2rad(data[h]), data[h + 1]) real[i] = re imag[i] = im if not keep_harmonic_dim: real = real.reshape(mean.shape) imag = imag.reshape(mean.shape) return mean, real, imag
[docs] def read_lsm( filename: str | PathLike[Any], /, ) -> DataArray: """Return hyperspectral image and metadata from Zeiss LSM file. LSM files contain multi-dimensional images and metadata from laser scanning microscopy measurements. The file format is based on TIFF. Parameters ---------- filename : str or Path Name of OME-TIFF file to read. Returns ------- xarray.DataArray Hyperspectral image data. Usually, a 3-to-5-dimensional array of type ``uint8`` or ``uint16``. Raises ------ tifffile.TiffFileError File is not a TIFF file. ValueError File is not an LSM file or does not contain hyperspectral image. Examples -------- >>> data = read_lsm(fetch('paramecium.lsm')) >>> data.values array(...) >>> data.dtype dtype('uint8') >>> data.shape (30, 512, 512) >>> data.dims ('C', 'Y', 'X') >>> data.coords['C'].data # wavelengths array(...) """ import tifffile with tifffile.TiffFile(filename) as tif: if not tif.is_lsm: raise ValueError(f'{tif.filename} is not an LSM file') page = tif.pages.first lsminfo = tif.lsm_metadata channels = page.tags[258].count if channels < 4 or lsminfo is None or lsminfo['SpectralScan'] != 1: raise ValueError( f'{tif.filename} does not contain hyperspectral image' ) # TODO: contribute this to tifffile series = tif.series[0] data = series.asarray() dims = tuple(series.axes) coords = {} # channel wavelengths axis = dims.index('C') wavelengths = lsminfo['ChannelWavelength'].mean(axis=1) if wavelengths.size != data.shape[axis]: raise ValueError( f'{tif.filename} wavelengths do not match channel axis' ) # stack may contain non-wavelength frame indices = wavelengths > 0 wavelengths = wavelengths[indices] if wavelengths.size < 3: raise ValueError( f'{tif.filename} does not contain hyperspectral image' ) data = data.take(indices.nonzero()[0], axis=axis) coords['C'] = wavelengths # time stamps if 'T' in dims: coords['T'] = lsminfo['TimeStamps'] if coords['T'].size != data.shape[dims.index('T')]: raise ValueError( f'{tif.filename} timestamps do not match time axis' ) # spatial coordinates for ax in 'ZYX': if ax in dims: size = data.shape[dims.index(ax)] coords[ax] = numpy.linspace( lsminfo[f'Origin{ax}'], size * lsminfo[f'VoxelSize{ax}'], size, endpoint=False, dtype=numpy.float64, ) metadata = _metadata(series.axes, data.shape, filename, **coords) from xarray import DataArray return DataArray(data, **metadata)
[docs] def read_ifli( filename: str | PathLike[Any], /, *, channel: int = 0, **kwargs: Any, ) -> DataArray: """Return image and metadata from ISS IFLI file. ISS VistaVision IFLI files contain phasor coordinates for several positions, wavelengths, time points, channels, slices, and frequencies from analog or digital frequency-domain fluorescence lifetime measurements. Parameters ---------- filename : str or Path Name of ISS IFLI file to read. channel : int, optional Index of channel to return. The first channel is returned by default. **kwargs Additional arguments passed to :py:meth:`lfdfiles.VistaIfli.asarray`, for example ``memmap=True``. Returns ------- xarray.DataArray Average intensity and phasor coordinates. An array of up to 8 dimensions with :ref:`axes codes <axes>` ``'RCTZYXFS'`` and type ``float32``. The last dimension contains `mean`, `real`, and `imag` phasor coordinates. - ``coords['F']``: modulation frequencies. - ``coords['C']``: emission wavelengths, if any. - ``attrs['ref_tau']``: reference lifetimes. - ``attrs['ref_tau_frac']``: reference lifetime fractions. - ``attrs['ref_phasor']``: reference phasor coordinates for all frequencies. Raises ------ lfdfiles.LfdFileError File is not an ISS IFLI file. Examples -------- >>> data = read_ifli(fetch('frequency_domain.ifli')) >>> data.values array(...) >>> data.dtype dtype('float32') >>> data.shape (256, 256, 4, 3) >>> data.dims ('Y', 'X', 'F', 'S') >>> data.coords['F'].data array([8.033...]) >>> data.coords['S'].data array(['mean', 'real', 'imag'], dtype='<U4') >>> data.attrs {'ref_tau': (2.5, 0.0), 'ref_tau_frac': (1.0, 0.0), 'ref_phasor': array...} """ import lfdfiles with lfdfiles.VistaIfli(filename) as ifli: assert ifli.axes is not None # always return one acquisition channel to simplify metadata handling data = ifli.asarray(**kwargs)[:, channel : channel + 1].copy() shape, axes, _ = _squeeze_axes(data.shape, ifli.axes, skip='FYX') axes = axes.replace('E', 'C') # spectral axis data = data.reshape(shape) header = ifli.header coords: dict[str, Any] = {} coords['S'] = ['mean', 'real', 'imag'] coords['F'] = numpy.array(header['ModFrequency']) # TODO: how to distinguish time- from frequency-domain? # TODO: how to extract spatial coordinates? if 'T' in axes: coords['T'] = numpy.array(header['TimeTags']) if 'C' in axes: coords['C'] = numpy.array(header['SpectrumInfo']) # if 'Z' in axes: # coords['Z'] = numpy.array(header[]) metadata = _metadata(axes, shape, filename, **coords) attrs = metadata['attrs'] attrs['ref_tau'] = ( header['RefLifetime'][channel], header['RefLifetime2'][channel], ) attrs['ref_tau_frac'] = ( header['RefLifetimeFrac'][channel], 1.0 - header['RefLifetimeFrac'][channel], ) attrs['ref_phasor'] = numpy.array(header['RefDCPhasor'][channel]) from xarray import DataArray return DataArray(data, **metadata)
[docs] def read_sdt( filename: str | PathLike[Any], /, *, index: int = 0, ) -> DataArray: """Return time-resolved image and metadata from Becker & Hickl SDT file. SDT files contain time-correlated single photon counting measurement data and instrumentation parameters. Parameters ---------- filename : str or Path Name of SDT file to read. index : int, optional, default: 0 Index of dataset to read in case the file contains multiple datasets. Returns ------- xarray.DataArray Time correlated single photon counting image data with :ref:`axes codes <axes>` ``'YXH'`` and type ``uint16``, ``uint32``, or ``float32``. - ``coords['H']``: times of the histogram bins. - ``attrs['frequency']``: repetition frequency in MHz. Raises ------ ValueError File is not an SDT file containing time-correlated single photon counting data. Examples -------- >>> data = read_sdt(fetch('tcspc.sdt')) >>> data.values array(...) >>> data.dtype dtype('uint16') >>> data.shape (128, 128, 256) >>> data.dims ('Y', 'X', 'H') >>> data.coords['H'].data array(...) >>> data.attrs['frequency'] 79... """ import sdtfile with sdtfile.SdtFile(filename) as sdt: if ( 'SPC Setup & Data File' not in sdt.info.id and 'SPC FCS Data File' not in sdt.info.id ): # skip DLL data raise ValueError( f'{os.path.basename(filename)!r} ' 'is not an SDT file containing TCSPC data' ) # filter block types? # sdtfile.BlockType(sdt.block_headers[index].block_type).contents # == 'PAGE_BLOCK' data = sdt.data[index] times = sdt.times[index] # TODO: get spatial coordinates from scanner settings? metadata = _metadata('QYXH'[-data.ndim :], data.shape, filename, H=times) metadata['attrs']['frequency'] = 1e-6 / float(times[-1] + times[1]) from xarray import DataArray return DataArray(data, **metadata)
[docs] def read_ptu( filename: str | PathLike[Any], /, selection: Sequence[int | slice | EllipsisType | None] | None = None, *, trimdims: Sequence[Literal['T', 'C', 'H']] | str | None = None, dtype: DTypeLike | None = None, frame: int | None = None, channel: int | None = None, dtime: int | None = 0, keepdims: bool = True, ) -> DataArray: """Return image histogram and metadata from PicoQuant PTU T3 mode file. PTU files contain time-correlated single photon counting measurement data and instrumentation parameters. Parameters ---------- filename : str or Path Name of PTU file to read. selection : sequence of index types, optional Indices for all dimensions: - ``None``: return all items along axis (default). - ``Ellipsis``: return all items along multiple axes. - ``int``: return single item along axis. - ``slice``: return chunk of axis. ``slice.step`` is binning factor. If ``slice.step=-1``, integrate all items along axis. trimdims : str, optional, default: 'TCH' Axes to trim. dtype : dtype-like, optional, default: uint16 Unsigned integer type of image histogram array. Increase the bit depth to avoid overflows when integrating. frame : int, optional If < 0, integrate time axis, else return specified frame. Overrides `selection` for axis ``T``. channel : int, optional If < 0, integrate channel axis, else return specified channel. Overrides `selection` for axis ``C``. dtime : int, optional, default: 0 Specifies number of bins in image histogram. If 0 (default), return number of bins in one period. If < 0, integrate delay time axis. If > 0, return up to specified bin. Overrides `selection` for axis ``H``. keepdims : bool, optional, default: True If true (default), reduced axes are left as size-one dimension. Returns ------- xarray.DataArray Decoded TTTR T3 records as up to 5-dimensional image array with :ref:`axes codes <axes>` ``'TYXCH'`` and type specified in ``dtype``: - ``coords['H']``: times of the histogram bins. - ``attrs['frequency']``: repetition frequency in MHz. Raises ------ ptufile.PqFileError File is not a PicoQuant PTU file or is corrupted. ValueError File is not a PicoQuant PTU T3 mode file containing time-correlated single photon counting data. Examples -------- >>> data = read_ptu(fetch('hazelnut_FLIM_single_image.ptu')) >>> data.values array(...) >>> data.dtype dtype('uint16') >>> data.shape (5, 256, 256, 1, 132) >>> data.dims ('T', 'Y', 'X', 'C', 'H') >>> data.coords['H'].data array(...) >>> data.attrs['frequency'] 78.02 """ import ptufile from xarray import DataArray with ptufile.PtuFile(filename, trimdims=trimdims) as ptu: if not ptu.is_t3 or not ptu.is_image: raise ValueError( f'{os.path.basename(filename)!r} ' 'is not a PTU file containing a T3 mode image' ) data = ptu.decode_image( selection, dtype=dtype, frame=frame, channel=channel, dtime=dtime, keepdims=keepdims, asxarray=True, ) assert isinstance(data, DataArray) data.attrs['frequency'] = ptu.frequency * 1e-6 # MHz return data
[docs] def read_flif( filename: str | PathLike[Any], /, ) -> DataArray: """Return frequency-domain image and metadata from FlimFast FLIF file. FlimFast FLIF files contain camera images and metadata from frequency-domain fluorescence lifetime measurements. Parameters ---------- filename : str or Path Name of FlimFast FLIF file to read. Returns ------- xarray.DataArray Frequency-domain phase images with :ref:`axes codes <axes>` ``'THYX'`` and type ``uint16``: - ``coords['H']``: phases in radians. - ``attrs['frequency']``: repetition frequency in MHz. - ``attrs['ref_phase']``: measured phase of reference. - ``attrs['ref_mod']``: measured modulation of reference. - ``attrs['ref_tauphase']``: lifetime from phase of reference. - ``attrs['ref_taumod']``: lifetime from modulation of reference. Raises ------ lfdfiles.LfdFileError File is not a FlimFast FLIF file. Examples -------- >>> data = read_flif(fetch('flimfast.flif')) >>> data.values array(...) >>> data.dtype dtype('uint16') >>> data.shape (32, 220, 300) >>> data.dims ('H', 'Y', 'X') >>> data.coords['H'].data array(...) >>> data.attrs['frequency'] 80.65... """ import lfdfiles with lfdfiles.FlimfastFlif(filename) as flif: nphases = int(flif.header.phases) data = flif.asarray() if data.shape[0] < nphases: raise ValueError(f'measured phases {data.shape[0]} < {nphases=}') if data.shape[0] % nphases != 0: data = data[: (data.shape[0] // nphases) * nphases] data = data.reshape(-1, nphases, data.shape[1], data.shape[2]) if data.shape[0] == 1: data = data[0] axes = 'HYX' else: axes = 'THYX' # TODO: check if phases are ordered phases = numpy.radians(flif.records['phase'][:nphases]) metadata = _metadata(axes, data.shape, H=phases) attrs = metadata['attrs'] attrs['frequency'] = float(flif.header.frequency) attrs['ref_phase'] = float(flif.header.measured_phase) attrs['ref_mod'] = float(flif.header.measured_mod) attrs['ref_tauphase'] = float(flif.header.ref_tauphase) attrs['ref_taumod'] = float(flif.header.ref_taumod) from xarray import DataArray return DataArray(data, **metadata)
[docs] def read_fbd( filename: str | PathLike[Any], /, *, frame: int | None = None, channel: int | None = None, keepdims: bool = True, laser_factor: float = -1.0, ) -> DataArray: """Return frequency-domain image and metadata from FLIMbox FBD file. FDB files contain encoded data from the FLIMbox device, which can be decoded to photon arrival windows, channels, and global times. The encoding scheme depends on the FLIMbox device's firmware. The FBD file format is undocumented. This function may fail to produce expected results when files use unknown firmware, do not contain image scans, settings were recorded incorrectly, scanner and FLIMbox frequencies were out of sync, or scanner settings were changed during acquisition. Parameters ---------- filename : str or Path Name of FLIMbox FBD file to read. frame : int, optional If None (default), return all frames. If < 0, integrate time axis, else return specified frame. channel : int, optional If None (default), return all channels, else return specified channel. keepdims : bool, optional If true (default), reduced axes are left as size-one dimension. laser_factor : float, optional Factor to correct dwell_time/laser_frequency. Returns ------- xarray.DataArray Frequency-domain image histogram with :ref:`axes codes <axes>` ``'TCYXH'`` and type ``uint16``: - ``coords['H']``: phases in radians. - ``attrs['frequency']``: repetition frequency in MHz. Raises ------ lfdfiles.LfdFileError File is not a FLIMbox FBD file. Examples -------- >>> data = read_fbd(fetch('convallaria_000$EI0S.fbd')) # doctest: +SKIP >>> data.values # doctest: +SKIP array(...) >>> data.dtype # doctest: +SKIP dtype('uint16') >>> data.shape # doctest: +SKIP (9, 2, 256, 256, 64) >>> data.dims # doctest: +SKIP ('T', 'C', 'Y', 'X', 'H') >>> data.coords['H'].data # doctest: +SKIP array(...) >>> data.attrs['frequency'] # doctest: +SKIP 40.0 """ import lfdfiles integrate_frames = 0 if frame is None or frame >= 0 else 1 with lfdfiles.FlimboxFbd(filename, laser_factor=laser_factor) as fbd: data = fbd.asimage(None, None, integrate_frames=integrate_frames) if integrate_frames: frame = None copy = False axes = 'TCYXH' if channel is None: if not keepdims and data.shape[1] == 1: data = data[:, 0] axes = 'TYXH' else: if channel < 0 or channel >= data.shape[1]: raise IndexError(f'{channel=} out of bounds') if keepdims: data = data[:, channel : channel + 1] else: data = data[:, channel] axes = 'TYXH' copy = True if frame is None: if not keepdims and data.shape[0] == 1: data = data[0] axes = axes[1:] else: if frame < 0 or frame > data.shape[0]: raise IndexError(f'{frame=} out of bounds') if keepdims: data = data[frame : frame + 1] else: data = data[frame] axes = axes[1:] copy = True if copy: data = data.copy() # TODO: return arrival window indices or micro-times as H coords? phases = numpy.linspace( 0.0, numpy.pi * 2, data.shape[-1], endpoint=False ) metadata = _metadata(axes, data.shape, H=phases) attrs = metadata['attrs'] attrs['frequency'] = fbd.laser_frequency * 1e-6 from xarray import DataArray return DataArray(data, **metadata)
[docs] def read_b64( filename: str | PathLike[Any], /, ) -> DataArray: """Return intensity image and metadata from SimFCS B64 file. B64 files contain one or more square intensity image(s), a carpet of lines, or a stream of intensity data. B64 files contain no metadata. Parameters ---------- filename : str or Path Name of SimFCS B64 file to read. Returns ------- xarray.DataArray Stack of square-sized intensity images of type ``int16``. Raises ------ lfdfiles.LfdFileError File is not a SimFCS B64 file. ValueError File does not contain an image stack. Examples -------- >>> data = read_b64(fetch('simfcs.b64')) >>> data.values array(...) >>> data.dtype dtype('int16') >>> data.shape (22, 1024, 1024) >>> data.dtype dtype('int16') >>> data.dims ('I', 'Y', 'X') """ import lfdfiles with lfdfiles.SimfcsB64(filename) as b64: data = b64.asarray() if data.ndim != 3: raise ValueError( f'{os.path.basename(filename)!r} ' 'does not contain an image stack' ) metadata = _metadata(b64.axes, data.shape, filename) from xarray import DataArray return DataArray(data, **metadata)
[docs] def read_z64( filename: str | PathLike[Any], /, ) -> DataArray: """Return image and metadata from SimFCS Z64 file. Z64 files contain stacks of square images such as intensity volumes or time-domain fluorescence lifetime histograms acquired from Becker & Hickl(r) TCSPC cards. Z64 files contain no metadata. Parameters ---------- filename : str or Path Name of SimFCS Z64 file to read. Returns ------- xarray.DataArray Single or stack of square-sized images of type ``float32``. Raises ------ lfdfiles.LfdFileError File is not a SimFCS Z64 file. Examples -------- >>> data = read_z64(fetch('simfcs.z64')) >>> data.values array(...) >>> data.dtype dtype('float32') >>> data.shape (256, 256, 256) >>> data.dims ('Q', 'Y', 'X') """ import lfdfiles with lfdfiles.SimfcsZ64(filename) as z64: data = z64.asarray() metadata = _metadata(z64.axes, data.shape, filename) from xarray import DataArray return DataArray(data, **metadata)
[docs] def read_bh( filename: str | PathLike[Any], /, ) -> DataArray: """Return image and metadata from SimFCS B&H file. B&H files contain time-domain fluorescence lifetime histogram data, acquired from Becker & Hickl(r) TCSPC cards, or converted from other data sources. B&H files contain no metadata. Parameters ---------- filename : str or Path Name of SimFCS B&H file to read. Returns ------- xarray.DataArray Time-domain fluorescence lifetime histogram with axes ``'HYX'``, shape ``(256, 256, 256)``, and type ``float32``. Raises ------ lfdfiles.LfdFileError File is not a SimFCS B&H file. Examples -------- >>> data = read_bh(fetch('simfcs.b&h')) >>> data.values array(...) >>> data.dtype dtype('float32') >>> data.shape (256, 256, 256) >>> data.dims ('H', 'Y', 'X') """ import lfdfiles with lfdfiles.SimfcsBh(filename) as bnh: assert bnh.axes is not None data = bnh.asarray() metadata = _metadata(bnh.axes.replace('Q', 'H'), data.shape, filename) from xarray import DataArray return DataArray(data, **metadata)
[docs] def read_bhz( filename: str | PathLike[Any], /, ) -> DataArray: """Return image and metadata from SimFCS BHZ file. BHZ files contain time-domain fluorescence lifetime histogram data, acquired from Becker & Hickl(r) TCSPC cards, or converted from other data sources. BHZ files contain no metadata. Parameters ---------- filename : str or Path Name of SimFCS BHZ file to read. Returns ------- xarray.DataArray Time-domain fluorescence lifetime histogram with axes ``'HYX'``, shape ``(256, 256, 256)``, and type ``float32``. Raises ------ lfdfiles.LfdFileError File is not a SimFCS BHZ file. Examples -------- >>> data = read_bhz(fetch('simfcs.bhz')) >>> data.values array(...) >>> data.dtype dtype('float32') >>> data.shape (256, 256, 256) >>> data.dims ('H', 'Y', 'X') """ import lfdfiles with lfdfiles.SimfcsBhz(filename) as bhz: assert bhz.axes is not None data = bhz.asarray() metadata = _metadata(bhz.axes.replace('Q', 'H'), data.shape, filename) from xarray import DataArray return DataArray(data, **metadata)
def _metadata( dims: Sequence[str] | None, shape: tuple[int, ...], /, name: str | PathLike[Any] | None = None, attrs: dict[str, Any] | None = None, **coords: Any, ) -> dict[str, Any]: """Return xarray-style dims, coords, and attrs in a dict. >>> _metadata('SYX', (3, 2, 1), S=['0', '1', '2']) {'dims': ('S', 'Y', 'X'), 'coords': {'S': ['0', '1', '2']}, 'attrs': {}} """ assert dims is not None dims = tuple(dims) if len(dims) != len(shape): raise ValueError( f'dims do not match shape {len(dims)} != {len(shape)}' ) coords = {dim: coords[dim] for dim in dims if dim in coords} if attrs is None: attrs = {} metadata = {'dims': dims, 'coords': coords, 'attrs': attrs} if name: metadata['name'] = os.path.basename(name) return metadata def _squeeze_axes( shape: Sequence[int], axes: str, /, skip: str = 'XY', ) -> tuple[tuple[int, ...], str, tuple[bool, ...]]: """Return shape and axes with length-1 dimensions removed. Remove unused dimensions unless their axes are listed in `skip`. Adapted from the tifffile library. Parameters ---------- shape : tuple of ints Sequence of dimension sizes. axes : str Character codes for dimensions in `shape`. skip : str, optional Character codes for dimensions whose length-1 dimensions are not removed. The default is 'XY'. Returns ------- shape : tuple of ints Sequence of dimension sizes with length-1 dimensions removed. axes : str Character codes for dimensions in output `shape`. squeezed : str Dimensions were kept (True) or removed (False). Examples -------- >>> _squeeze_axes((5, 1, 2, 1, 1), 'TZYXC') ((5, 2, 1), 'TYX', (True, False, True, True, False)) >>> _squeeze_axes((1,), 'Q') ((1,), 'Q', (True,)) """ if len(shape) != len(axes): raise ValueError(f'{len(shape)=} != {len(axes)=}') if not axes: return tuple(shape), axes, () squeezed: list[bool] = [] shape_squeezed: list[int] = [] axes_squeezed: list[str] = [] for size, ax in zip(shape, axes): if size > 1 or ax in skip: squeezed.append(True) shape_squeezed.append(size) axes_squeezed.append(ax) else: squeezed.append(False) if len(shape_squeezed) == 0: squeezed[-1] = True shape_squeezed.append(shape[-1]) axes_squeezed.append(axes[-1]) return tuple(shape_squeezed), ''.join(axes_squeezed), tuple(squeezed)