"""Read and write time-resolved and hyperspectral image file formats.
The ``phasorpy.io`` module provides functions to:
- read and write phasor coordinate images in OME-TIFF format, which can be
imported in Bio-Formats and Fiji:
- :py:func:`phasor_to_ometiff`
- :py:func:`phasor_from_ometiff`
- read and write phasor coordinate images in SimFCS referenced R64 format:
- :py:func:`phasor_to_simfcs_referenced`
- :py:func:`phasor_from_simfcs_referenced`
- read time-resolved and hyperspectral image data and metadata (as relevant
to phasor analysis) from many file formats used in bio-imaging:
- :py:func:`read_imspector_tiff` - ImSpector FLIM TIFF
- :py:func:`read_lsm` - Zeiss LSM
- :py:func:`read_ifli` - ISS IFLI
- :py:func:`read_sdt` - Becker & Hickl SDT
- :py:func:`read_ptu` - PicoQuant PTU
- :py:func:`read_fbd` - FLIMbox FBD
- :py:func:`read_flif` - FlimFast FLIF
- :py:func:`read_b64` - SimFCS B64
- :py:func:`read_z64` - SimFCS Z64
- :py:func:`read_bhz` - SimFCS BHZ
- :py:func:`read_bh` - SimFCS B&H
Support for other file formats is being considered:
- OME-TIFF
- Zeiss CZI
- Leica LIF
- Nikon ND2
- Olympus OIB/OIF
- Olympus OIR
The functions are implemented as minimal wrappers around specialized
third-party file reader libraries, currently
`tifffile <https://github.com/cgohlke/tifffile>`_,
`ptufile <https://github.com/cgohlke/ptufile>`_,
`sdtfile <https://github.com/cgohlke/sdtfile>`_, and
`lfdfiles <https://github.com/cgohlke/lfdfiles>`_.
For advanced or unsupported use cases, consider using these libraries directly.
The read functions typically have the following signature::
read_ext(
filename: str | PathLike,
/,
**kwargs
): -> xarray.DataArray
where ``ext`` indicates the file format and ``kwargs`` are optional arguments
passed to the underlying file reader library or used to select which data is
returned. The returned `xarray.DataArray
<https://docs.xarray.dev/en/stable/user-guide/data-structures.html>`_
contains an n-dimensional array with labeled coordinates, dimensions, and
attributes:
- ``data`` or ``values`` (*array_like*)
Numpy array or array-like holding the array's values.
- ``dims`` (*tuple of str*)
:ref:`Axes character codes <axes>` for each dimension in ``data``.
For example, ``('T', 'C', 'Y', 'X')`` defines the dimension order in a
4-dimensional array of a time-series of multi-channel images.
- ``coords`` (*dict_like[str, array_like]*)
Coordinate arrays labelling each point in the data array.
The keys are :ref:`axes character codes <axes>`.
Values are 1-dimensional arrays of numbers or strings.
For example, ``coords['C']`` could be an array of emission wavelengths.
- ``attrs`` (*dict[str, Any]*)
Arbitrary metadata such as measurement or calibration parameters required to
interpret the data values.
For example, the laser repetition frequency of a time-resolved measurement.
.. _axes:
Axes character codes from the OME model and tifffile library are used as
``dims`` items and ``coords`` keys:
- ``'X'`` : width (OME)
- ``'Y'`` : height (OME)
- ``'Z'`` : depth (OME)
- ``'S'`` : sample (color components or phasor coordinates)
- ``'I'`` : sequence (of images, frames, or planes)
- ``'T'`` : time (OME)
- ``'C'`` : channel (OME. Acquisition path or emission wavelength)
- ``'A'`` : angle (OME)
- ``'P'`` : phase (OME. In LSM, ``'P'`` maps to position)
- ``'R'`` : tile (OME. Region, position, or mosaic)
- ``'H'`` : lifetime histogram (OME)
- ``'E'`` : lambda (OME. Excitation wavelength)
- ``'F'`` : frequency (ISS)
- ``'Q'`` : other (OME. Harmonics in PhasorPy TIFF)
- ``'L'`` : exposure (FluoView)
- ``'V'`` : event (FluoView)
- ``'M'`` : mosaic (LSM 6)
- ``'J'`` : column (NDTiff)
- ``'K'`` : row (NDTiff)
"""
from __future__ import annotations
__all__ = [
'phasor_from_ometiff',
'phasor_from_simfcs_referenced',
'phasor_to_ometiff',
'phasor_to_simfcs_referenced',
'read_b64',
'read_bh',
'read_bhz',
# 'read_czi',
'read_fbd',
'read_flif',
'read_ifli',
'read_imspector_tiff',
# 'read_lif',
'read_lsm',
# 'read_nd2',
# 'read_oif',
# 'read_oir',
# 'read_ometiff',
'read_ptu',
'read_sdt',
'read_z64',
'_squeeze_axes',
]
import logging
import os
import re
import struct
import zlib
from typing import TYPE_CHECKING
from ._utils import chunk_iter, parse_harmonic
from .phasor import phasor_from_polar, phasor_to_polar
if TYPE_CHECKING:
from ._typing import (
Any,
ArrayLike,
DataArray,
DTypeLike,
EllipsisType,
Literal,
NDArray,
PathLike,
Sequence,
)
import numpy
logger = logging.getLogger(__name__)
[docs]
def phasor_to_ometiff(
filename: str | PathLike[Any],
mean: ArrayLike,
real: ArrayLike,
imag: ArrayLike,
/,
*,
frequency: float | None = None,
harmonic: int | Sequence[int] | None = None,
axes: str | None = None,
dtype: DTypeLike | None = None,
description: str | None = None,
**kwargs: Any,
) -> None:
"""Write phasor coordinate images and metadata to OME-TIFF file.
The OME-TIFF format is compatible with Bio-Formats and Fiji.
By default, write phasor coordinates as single precision floating point
values to separate image series.
Write images larger than (1024, 1024) as (256, 256) tiles, datasets
larger than 2 GB as BigTIFF, and datasets larger than 8 KB zlib-compressed.
This file format is experimental and might be incompatible with future
versions of this library. It is intended for temporarily exchanging
phasor coordinates with other software, not as a long-term storage
solution.
Parameters
----------
filename : str or Path
Name of OME-TIFF file to write.
mean : array_like
Average intensity image. Write to image series named 'Phasor mean'.
real : array_like
Image of real component of phasor coordinates.
Multiple harmonics, if any, must be in the first dimension.
Write to image series named 'Phasor real'.
imag : array_like
Image of imaginary component of phasor coordinates.
Multiple harmonics, if any, must be in the first dimension.
Write to image series named 'Phasor imag'.
frequency : float, optional
Fundamental frequency of time-resolved phasor coordinates.
Write to image series named 'Phasor frequency'.
harmonic : int or sequence of int, optional
Harmonics present in the first dimension of `real` and `imag`, if any.
Write to image series named 'Phasor harmonic'.
Only needed if harmonics are not starting at and increasing by one.
axes : str, optional
Character codes for `mean` image dimensions.
By default, the last dimensions are assumed to be 'TZCYX'.
If harmonics are present in `real` and `imag`, an "other" (``Q``)
dimension is prepended to axes for those arrays.
Refer to the OME-TIFF model for allowed axes and their order.
dtype : dtype-like, optional
Floating point data type used to store phasor coordinates.
The default is ``float32``, which has 6 digits of precision
and maximizes compatibility with other software.
description : str, optional
Plain-text description of dataset. Write as OME dataset description.
**kwargs
Additional arguments passed to :py:class:`tifffile.TiffWriter` and
:py:meth:`tifffile.TiffWriter.write`.
For example, ``compression=None`` writes image data uncompressed.
See Also
--------
phasorpy.io.phasor_from_ometiff
Notes
-----
Scalar or one-dimensional phasor coordinate arrays are written as images.
The OME-TIFF format is specified in the
`OME Data Model and File Formats Documentation
<https://ome-model.readthedocs.io/>`_.
The `6D, 7D and 8D storage
<https://ome-model.readthedocs.io/en/latest/developers/6d-7d-and-8d-storage.html>`_
extension is used to store multi-harmonic phasor coordinates.
The modulo type for the first, harmonic dimension is "other".
Examples
--------
>>> mean, real, imag = numpy.random.rand(3, 32, 32, 32)
>>> phasor_to_ometiff(
... '_phasorpy.ome.tif', mean, real, imag, axes='ZYX', frequency=80.0
... )
"""
import tifffile
from .version import __version__
if dtype is None:
dtype = numpy.float32
dtype = numpy.dtype(dtype)
if dtype.kind != 'f':
raise ValueError(f'{dtype=} not a floating point type')
mean = numpy.asarray(mean, dtype)
real = numpy.asarray(real, dtype)
imag = numpy.asarray(imag, dtype)
datasize = mean.nbytes + real.nbytes + imag.nbytes
if real.shape != imag.shape:
raise ValueError(f'{real.shape=} != {imag.shape=}')
if mean.shape != real.shape[-mean.ndim :]:
raise ValueError(f'{mean.shape=} != {real.shape[-mean.ndim:]=}')
has_harmonic_dim = real.ndim == mean.ndim + 1
if mean.ndim == real.ndim or real.ndim == 0:
nharmonic = 1
else:
nharmonic = real.shape[0]
if mean.ndim < 2:
# not an image
mean = mean.reshape(1, -1)
if has_harmonic_dim:
real = real.reshape(real.shape[0], 1, -1)
imag = imag.reshape(imag.shape[0], 1, -1)
else:
real = real.reshape(1, -1)
imag = imag.reshape(1, -1)
if harmonic is not None:
harmonic, _ = parse_harmonic(harmonic)
if len(harmonic) != nharmonic:
raise ValueError('invalid harmonic')
if frequency is not None:
frequency_array = numpy.atleast_2d(frequency).astype(numpy.float64)
if frequency_array.size > 1:
raise ValueError('frequency must be scalar')
if axes is None:
axes = 'TZCYX'[-mean.ndim :]
else:
axes = ''.join(tuple(axes)) # accept dims tuple and str
if len(axes) != mean.ndim:
raise ValueError(f'{axes=} does not match {mean.ndim=}')
axes_phasor = axes if mean.ndim == real.ndim else 'Q' + axes
if 'photometric' not in kwargs:
kwargs['photometric'] = 'minisblack'
if 'compression' not in kwargs and datasize > 8192:
kwargs['compression'] = 'zlib'
if 'tile' not in kwargs and 'rowsperstrip' not in kwargs:
if (
axes.endswith('YX')
and mean.shape[-1] > 1024
and mean.shape[-2] > 1024
):
kwargs['tile'] = (256, 256)
mode = kwargs.pop('mode', None)
bigtiff = kwargs.pop('bigtiff', None)
if bigtiff is None:
bigtiff = datasize > 2**31
metadata = kwargs.pop('metadata', {})
if 'Creator' not in metadata:
metadata['Creator'] = f'PhasorPy {__version__}'
dataset = metadata.pop('Dataset', {})
if 'Name' not in dataset:
dataset['Name'] = 'Phasor'
if description:
dataset['Description'] = description
metadata['Dataset'] = dataset
if has_harmonic_dim:
metadata['TypeDescription'] = {'Q': 'Phasor harmonics'}
with tifffile.TiffWriter(
filename, bigtiff=bigtiff, mode=mode, ome=True
) as tif:
metadata['Name'] = 'Phasor mean'
metadata['axes'] = axes
tif.write(mean, metadata=metadata, **kwargs)
del metadata['Dataset']
metadata['Name'] = 'Phasor real'
metadata['axes'] = axes_phasor
tif.write(real, metadata=metadata, **kwargs)
metadata['Name'] = 'Phasor imag'
tif.write(imag, metadata=metadata, **kwargs)
if frequency is not None:
tif.write(frequency_array, metadata={'Name': 'Phasor frequency'})
if harmonic is not None:
tif.write(
numpy.atleast_2d(harmonic).astype(numpy.uint32),
metadata={'Name': 'Phasor harmonic'},
)
[docs]
def phasor_from_ometiff(
filename: str | PathLike[Any],
/,
*,
harmonic: int | Sequence[int] | Literal['all'] | str | None = None,
) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any], dict[str, Any]]:
"""Return phasor images and metadata from OME-TIFF written by PhasorPy.
Parameters
----------
filename : str or Path
Name of OME-TIFF file to read.
harmonic : int, sequence of int, or 'all', optional
Harmonic(s) to return from file.
If None (default), return the first harmonic stored in the file.
If `'all'`, return all harmonics as stored in file.
If a list, the first axes of the returned `real` and `imag` arrays
contain specified harmonic(s).
If an integer, the returned `real` and `imag` arrays are single
harmonic and have the same shape as `mean`.
Returns
-------
mean : ndarray
Average intensity image.
real : ndarray
Image of real component of phasor coordinates.
imag : ndarray
Image of imaginary component of phasor coordinates.
attrs : dict
Select metadata:
- ``'axes'`` (str):
Character codes for `mean` image dimensions.
- ``'harmonic'`` (int or list of int):
Harmonic(s) present in `real` and `imag`.
If a scalar, `real` and `imag` are single harmonic and contain no
harmonic axes.
If a list, `real` and `imag` contain one or more harmonics in the
first axis.
- ``'frequency'`` (float, optional):
Fundamental frequency of time-resolved phasor coordinates.
- ``'description'`` (str, optional):
OME dataset plain-text description.
Raises
------
tifffile.TiffFileError
File is not a TIFF file.
ValueError
File is not an OME-TIFF containing phasor coordinates.
IndexError
Requested harmonic is not found in file.
See Also
--------
phasorpy.io.phasor_to_ometiff
Notes
-----
Scalar or one-dimensional phasor coordinates stored in the file are
returned as two-dimensional images (three-dimensional if multiple
harmonics are present).
Examples
--------
>>> mean, real, imag = numpy.random.rand(3, 32, 32, 32)
>>> phasor_to_ometiff(
... '_phasorpy.ome.tif', mean, real, imag, axes='ZYX', frequency=80.0
... )
>>> mean, real, imag, attrs = phasor_from_ometiff('_phasorpy.ome.tif')
>>> mean
array(...)
>>> mean.dtype
dtype('float32')
>>> mean.shape
(32, 32, 32)
>>> attrs['axes']
'ZYX'
>>> attrs['frequency']
80.0
>>> attrs['harmonic']
1
"""
import tifffile
name = os.path.basename(filename)
with tifffile.TiffFile(filename) as tif:
if (
not tif.is_ome
or len(tif.series) < 3
or tif.series[0].name != 'Phasor mean'
or tif.series[1].name != 'Phasor real'
or tif.series[2].name != 'Phasor imag'
):
raise ValueError(
f'{name!r} is not an OME-TIFF containing phasor images'
)
attrs: dict[str, Any] = {'axes': tif.series[0].axes}
# TODO: read coords from OME-XML
ome_xml = tif.ome_metadata
assert ome_xml is not None
# TODO: parse OME-XML
match = re.search(
r'><Description>(.*)</Description><',
ome_xml,
re.MULTILINE | re.DOTALL,
)
if match is not None:
attrs['description'] = (
match.group(1)
.replace('&', '&')
.replace('>', '>')
.replace('<', '<')
)
has_harmonic_dim = tif.series[1].ndim > tif.series[0].ndim
nharmonics = tif.series[1].shape[0] if has_harmonic_dim else 1
harmonic_max = nharmonics
for i in (3, 4):
if len(tif.series) < i + 1:
break
series = tif.series[i]
data = series.asarray().squeeze()
if series.name == 'Phasor frequency':
attrs['frequency'] = float(data.item(0))
elif series.name == 'Phasor harmonic':
if not has_harmonic_dim and data.size == 1:
attrs['harmonic'] = int(data.item(0))
harmonic_max = attrs['harmonic']
elif has_harmonic_dim and data.size == nharmonics:
attrs['harmonic'] = data.tolist()
harmonic_max = max(attrs['harmonic'])
else:
logger.warning(
f'harmonic={data} does not match phasor '
f'shape={tif.series[1].shape}'
)
if 'harmonic' not in attrs:
if has_harmonic_dim:
attrs['harmonic'] = list(range(1, nharmonics + 1))
else:
attrs['harmonic'] = 1
harmonic_stored = attrs['harmonic']
mean = tif.series[0].asarray()
if harmonic is None:
# first harmonic in file
if isinstance(harmonic_stored, list):
attrs['harmonic'] = harmonic_stored[0]
else:
attrs['harmonic'] = harmonic_stored
real = tif.series[1].asarray()
if has_harmonic_dim:
real = real[0].copy()
imag = tif.series[2].asarray()
if has_harmonic_dim:
imag = imag[0].copy()
elif isinstance(harmonic, str) and harmonic == 'all':
# all harmonics as stored in file
real = tif.series[1].asarray()
imag = tif.series[2].asarray()
else:
# specified harmonics
harmonic, keepdims = parse_harmonic(harmonic, harmonic_max)
try:
if isinstance(harmonic_stored, list):
index = [harmonic_stored.index(h) for h in harmonic]
else:
index = [[harmonic_stored].index(h) for h in harmonic]
except ValueError as exc:
raise IndexError('harmonic not found') from exc
if has_harmonic_dim:
if keepdims:
attrs['harmonic'] = [harmonic_stored[i] for i in index]
real = tif.series[1].asarray()[index].copy()
imag = tif.series[2].asarray()[index].copy()
else:
attrs['harmonic'] = harmonic_stored[index[0]]
real = tif.series[1].asarray()[index[0]].copy()
imag = tif.series[2].asarray()[index[0]].copy()
elif keepdims:
real = tif.series[1].asarray()
real = real.reshape(1, *real.shape)
imag = tif.series[2].asarray()
imag = imag.reshape(1, *imag.shape)
attrs['harmonic'] = [harmonic_stored]
else:
real = tif.series[1].asarray()
imag = tif.series[2].asarray()
if real.shape != imag.shape:
logger.warning(f'{real.shape=} != {imag.shape=}')
if real.shape[-mean.ndim :] != mean.shape:
logger.warning(f'{real.shape[-mean.ndim:]=} != {mean.shape=}')
return mean, real, imag, attrs
[docs]
def phasor_to_simfcs_referenced(
filename: str | PathLike[Any],
mean: ArrayLike,
real: ArrayLike,
imag: ArrayLike,
/,
*,
size: int | None = None,
axes: str | None = None,
) -> None:
"""Write phasor coordinate images to SimFCS referenced R64 file(s).
SimFCS referenced R64 files store square-shaped (commonly 256x256)
images of the average intensity, and the calibrated phasor coordinates
(encoded as phase and modulation) of two harmonics as ZIP-compressed,
single precision floating point arrays.
The file format does not support any metadata.
Images with more than two dimensions or larger than square size are
chunked to square-sized images and saved to separate files with
a name pattern, for example, "filename_T099_Y256_X000.r64".
Images or chunks with less than two dimensions or smaller than square size
are padded with NaN values.
Parameters
----------
filename : str or Path
Name of SimFCS referenced R64 file to write.
The file extension must be ``.r64``.
mean : array_like
Average intensity image.
real : array_like
Image of real component of calibrated phasor coordinates.
Multiple harmonics, if any, must be in the first dimension.
Harmonics must be starting at and increasing by one.
imag : array_like
Image of imaginary component of calibrated phasor coordinates.
Multiple harmonics, if any, must be in the first dimension.
Harmonics must be starting at and increasing by one.
size : int, optional
Size of X and Y dimensions of square-sized images stored in file.
By default, ``size = min(256, max(4, sizey, sizex))``.
axes : str, optional
Character codes for `mean` dimensions used to format file names.
See Also
--------
phasorpy.io.phasor_from_simfcs_referenced
Examples
--------
>>> mean, real, imag = numpy.random.rand(3, 32, 32)
>>> phasor_to_simfcs_referenced('_phasorpy.r64', mean, real, imag)
"""
filename, ext = os.path.splitext(filename)
if ext.lower() != '.r64':
raise ValueError(f'file extension {ext} != .r64')
# TODO: delay conversions to numpy arrays to inner loop
mean = numpy.asarray(mean, numpy.float32)
phi, mod = phasor_to_polar(real, imag, dtype=numpy.float32)
del real
del imag
phi = numpy.rad2deg(phi)
if phi.shape != mod.shape:
raise ValueError(f'{phi.shape=} != {mod.shape=}')
if mean.shape != phi.shape[-mean.ndim :]:
raise ValueError(f'{mean.shape=} != {phi.shape[-mean.ndim:]=}')
if phi.ndim == mean.ndim:
phi = phi.reshape(1, *phi.shape)
mod = mod.reshape(1, *mod.shape)
nharmonic = phi.shape[0]
if mean.ndim < 2:
# not an image
mean = mean.reshape(1, -1)
phi = phi.reshape(nharmonic, 1, -1)
mod = mod.reshape(nharmonic, 1, -1)
# TODO: investigate actual size and harmonics limits of SimFCS
sizey, sizex = mean.shape[-2:]
if size is None:
size = min(256, max(4, sizey, sizex))
elif not 4 <= size <= 65535:
raise ValueError(f'{size=} out of range [4..65535]')
harmonics_per_file = 2 # TODO: make this a parameter?
chunk_shape = tuple(
[max(harmonics_per_file, 2)] + ([1] * (phi.ndim - 3)) + [size, size]
)
multi_file = any(i / j > 1 for i, j in zip(phi.shape, chunk_shape))
if axes is not None and len(axes) == phi.ndim - 1:
axes = 'h' + axes
chunk = numpy.empty((size, size), dtype=numpy.float32)
def rawdata_append(
rawdata: list[bytes], a: NDArray[Any] | None = None
) -> None:
if a is None:
chunk[:] = numpy.nan
rawdata.append(chunk.tobytes())
else:
sizey, sizex = a.shape[-2:]
if sizey == size and sizex == size:
rawdata.append(a.tobytes())
elif sizey <= size and sizex <= size:
chunk[:sizey, :sizex] = a[..., :sizey, :sizex]
chunk[sizey:, sizex:] = numpy.nan
rawdata.append(chunk.tobytes())
else:
raise RuntimeError # should not be reached
for index, label, _ in chunk_iter(
phi.shape, chunk_shape, axes, squeeze=False, use_index=True
):
rawdata = [struct.pack('I', size)]
rawdata_append(rawdata, mean[index[1:]])
phi_ = phi[index]
mod_ = mod[index]
for i in range(phi_.shape[0]):
rawdata_append(rawdata, phi_[i])
rawdata_append(rawdata, mod_[i])
if phi_.shape[0] == 1:
rawdata_append(rawdata)
rawdata_append(rawdata)
if not multi_file:
label = ''
with open(filename + label + ext, 'wb') as fh:
fh.write(zlib.compress(b''.join(rawdata)))
[docs]
def phasor_from_simfcs_referenced(
filename: str | PathLike[Any],
/,
*,
harmonic: int | Sequence[int] | Literal['all'] | str | None = None,
) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]:
"""Return phasor coordinate images from SimFCS referenced (REF, R64) file.
SimFCS referenced REF and R64 files contain phasor coordinate images
(encoded as phase and modulation) for two harmonics.
Phasor coordinates from lifetime-resolved signals are calibrated.
Parameters
----------
filename : str or Path
Name of REF or R64 file to read.
harmonic : int or sequence of int, optional
Harmonic(s) to include in returned phasor coordinates.
By default, only the first harmonic is returned.
Returns
-------
mean : ndarray
Average intensity image.
real : ndarray
Image of real component of phasor coordinates.
Multiple harmonics, if any, are in the first axis.
imag : ndarray
Image of imaginary component of phasor coordinates.
Multiple harmonics, if any, are in the first axis.
Raises
------
lfdfiles.LfdfileError
File is not a SimFCS REF or R64 file.
See Also
--------
phasorpy.io.phasor_to_simfcs_referenced
Examples
--------
>>> phasor_to_simfcs_referenced(
... '_phasorpy.r64', *numpy.random.rand(3, 32, 32)
... )
>>> mean, real, imag = phasor_from_simfcs_referenced('_phasorpy.r64')
>>> mean
array([[...]], dtype=float32)
"""
import lfdfiles
ext = os.path.splitext(filename)[-1].lower()
if ext == '.r64':
with lfdfiles.SimfcsR64(filename) as r64:
data = r64.asarray()
elif ext == '.ref':
with lfdfiles.SimfcsRef(filename) as ref:
data = ref.asarray()
else:
raise ValueError(f'file extension must be .ref or .r64, not {ext!r}')
harmonic, keep_harmonic_dim = parse_harmonic(harmonic, data.shape[0] // 2)
mean = data[0].copy()
real = numpy.empty((len(harmonic),) + mean.shape, numpy.float32)
imag = numpy.empty_like(real)
for i, h in enumerate(harmonic):
h = (h - 1) * 2 + 1
re, im = phasor_from_polar(numpy.deg2rad(data[h]), data[h + 1])
real[i] = re
imag[i] = im
if not keep_harmonic_dim:
real = real.reshape(mean.shape)
imag = imag.reshape(mean.shape)
return mean, real, imag
[docs]
def read_lsm(
filename: str | PathLike[Any],
/,
) -> DataArray:
"""Return hyperspectral image and metadata from Zeiss LSM file.
LSM files contain multi-dimensional images and metadata from laser
scanning microscopy measurements. The file format is based on TIFF.
Parameters
----------
filename : str or Path
Name of OME-TIFF file to read.
Returns
-------
xarray.DataArray
Hyperspectral image data.
Usually, a 3-to-5-dimensional array of type ``uint8`` or ``uint16``.
Raises
------
tifffile.TiffFileError
File is not a TIFF file.
ValueError
File is not an LSM file or does not contain hyperspectral image.
Examples
--------
>>> data = read_lsm(fetch('paramecium.lsm'))
>>> data.values
array(...)
>>> data.dtype
dtype('uint8')
>>> data.shape
(30, 512, 512)
>>> data.dims
('C', 'Y', 'X')
>>> data.coords['C'].data # wavelengths
array(...)
"""
import tifffile
with tifffile.TiffFile(filename) as tif:
if not tif.is_lsm:
raise ValueError(f'{tif.filename} is not an LSM file')
page = tif.pages.first
lsminfo = tif.lsm_metadata
channels = page.tags[258].count
if channels < 4 or lsminfo is None or lsminfo['SpectralScan'] != 1:
raise ValueError(
f'{tif.filename} does not contain hyperspectral image'
)
# TODO: contribute this to tifffile
series = tif.series[0]
data = series.asarray()
dims = tuple(series.axes)
coords = {}
# channel wavelengths
axis = dims.index('C')
wavelengths = lsminfo['ChannelWavelength'].mean(axis=1)
if wavelengths.size != data.shape[axis]:
raise ValueError(
f'{tif.filename} wavelengths do not match channel axis'
)
# stack may contain non-wavelength frame
indices = wavelengths > 0
wavelengths = wavelengths[indices]
if wavelengths.size < 3:
raise ValueError(
f'{tif.filename} does not contain hyperspectral image'
)
data = data.take(indices.nonzero()[0], axis=axis)
coords['C'] = wavelengths
# time stamps
if 'T' in dims:
coords['T'] = lsminfo['TimeStamps']
if coords['T'].size != data.shape[dims.index('T')]:
raise ValueError(
f'{tif.filename} timestamps do not match time axis'
)
# spatial coordinates
for ax in 'ZYX':
if ax in dims:
size = data.shape[dims.index(ax)]
coords[ax] = numpy.linspace(
lsminfo[f'Origin{ax}'],
size * lsminfo[f'VoxelSize{ax}'],
size,
endpoint=False,
dtype=numpy.float64,
)
metadata = _metadata(series.axes, data.shape, filename, **coords)
from xarray import DataArray
return DataArray(data, **metadata)
[docs]
def read_imspector_tiff(
filename: str | PathLike[Any],
/,
) -> DataArray:
"""Return FLIM image stack and metadata from ImSpector TIFF file.
Parameters
----------
filename : str or Path
Name of ImSpector FLIM TIFF file to read.
Returns
-------
xarray.DataArray
TCSPC image stack.
Usually, a 3-to-5-dimensional array of type ``uint16``.
- ``coords['H']``: times of histogram bins.
- ``attrs['frequency']``: repetition frequency in MHz.
Raises
------
tifffile.TiffFileError
File is not a TIFF file.
ValueError
File is not an ImSpector FLIM TIFF file.
Examples
--------
>>> data = read_imspector_tiff(fetch('Embryo.tif'))
>>> data.values
array(...)
>>> data.dtype
dtype('uint16')
>>> data.shape
(56, 512, 512)
>>> data.dims
('H', 'Y', 'X')
>>> data.coords['H'].data # dtime bins
array(...)
>>> data.attrs['frequency'] # doctest: +NUMBER
80.109
"""
from xml.etree import ElementTree
import tifffile
with tifffile.TiffFile(filename) as tif:
tags = tif.pages.first.tags
omexml = tags.valueof(270, '')
make = tags.valueof(271, '')
if (
make != 'ImSpector'
or not omexml.startswith('<?xml version')
or len(tif.series) != 1
or not tif.is_ome
):
raise ValueError(f'{tif.filename} is not an ImSpector TIFF file')
series = tif.series[0]
ndim = series.ndim
axes = series.axes
shape = series.shape
if ndim < 3 or not axes.endswith('YX'):
raise ValueError(
f'{tif.filename} is not an ImSpector FLIM TIFF file'
)
data = series.asarray()
attrs: dict[str, Any] = {}
coords = {}
physical_size = {}
root = ElementTree.fromstring(omexml)
ns = {
'': 'http://www.openmicroscopy.org/Schemas/OME/2008-02',
'ca': 'http://www.openmicroscopy.org/Schemas/CA/2008-02',
}
description = root.find('.//Description', ns)
if (
description is not None
and description.text
and description.text != 'not_specified'
):
attrs['description'] = description.text
pixels = root.find('.//Image/Pixels', ns)
assert pixels is not None
for ax in 'TZYX':
attrib = 'TimeIncrement' if ax == 'T' else f'PhysicalSize{ax}'
if ax not in axes or attrib not in pixels.attrib:
continue
size = float(pixels.attrib[attrib])
physical_size[ax] = size
coords[ax] = numpy.linspace(
0.0,
size,
shape[axes.index(ax)],
endpoint=False,
dtype=numpy.float64,
)
axes_labels = root.find('.//ca:CustomAttributes/AxesLabels', ns)
if (
axes_labels is None
or 'X' not in axes_labels.attrib
or 'TCSPC' not in axes_labels.attrib['X']
or 'FirstAxis' not in axes_labels.attrib
or 'SecondAxis' not in axes_labels.attrib
):
raise ValueError(f'{tif.filename} is not an ImSpector FLIM TIFF file')
if axes_labels.attrib['FirstAxis'].endswith('TCSPC T'):
ax = axes[-3]
assert axes_labels.attrib['FirstAxis-Unit'] == 'ns'
elif axes_labels.attrib['SecondAxis'].endswith('TCSPC T') and ndim > 3:
ax = axes[-4]
assert axes_labels.attrib['SecondAxis-Unit'] == 'ns'
else:
raise ValueError(f'{tif.filename} is not an ImSpector FLIM TIFF file')
axes = axes.replace(ax, 'H')
coords['H'] = coords[ax]
del coords[ax]
attrs['frequency'] = float(
1000.0 / (shape[axes.index('H')] * physical_size[ax])
)
metadata = _metadata(axes, shape, filename, attrs=attrs, **coords)
from xarray import DataArray
return DataArray(data, **metadata)
[docs]
def read_ifli(
filename: str | PathLike[Any],
/,
*,
channel: int = 0,
**kwargs: Any,
) -> DataArray:
"""Return image and metadata from ISS IFLI file.
ISS VistaVision IFLI files contain phasor coordinates for several
positions, wavelengths, time points, channels, slices, and frequencies
from analog or digital frequency-domain fluorescence lifetime measurements.
Parameters
----------
filename : str or Path
Name of ISS IFLI file to read.
channel : int, optional
Index of channel to return. The first channel is returned by default.
**kwargs
Additional arguments passed to :py:meth:`lfdfiles.VistaIfli.asarray`,
for example ``memmap=True``.
Returns
-------
xarray.DataArray
Average intensity and phasor coordinates.
An array of up to 8 dimensions with :ref:`axes codes <axes>`
``'RCTZYXFS'`` and type ``float32``.
The last dimension contains `mean`, `real`, and `imag` phasor
coordinates.
- ``coords['F']``: modulation frequencies.
- ``coords['C']``: emission wavelengths, if any.
- ``attrs['ref_tau']``: reference lifetimes.
- ``attrs['ref_tau_frac']``: reference lifetime fractions.
- ``attrs['ref_phasor']``: reference phasor coordinates for all
frequencies.
Raises
------
lfdfiles.LfdFileError
File is not an ISS IFLI file.
Examples
--------
>>> data = read_ifli(fetch('frequency_domain.ifli'))
>>> data.values
array(...)
>>> data.dtype
dtype('float32')
>>> data.shape
(256, 256, 4, 3)
>>> data.dims
('Y', 'X', 'F', 'S')
>>> data.coords['F'].data # doctest: +NUMBER
array([8.033e+07, 1.607e+08, 2.41e+08, 4.017e+08])
>>> data.coords['S'].data
array(['mean', 'real', 'imag'], dtype='<U4')
>>> data.attrs
{'ref_tau': (2.5, 0.0), 'ref_tau_frac': (1.0, 0.0), 'ref_phasor': array...}
"""
import lfdfiles
with lfdfiles.VistaIfli(filename) as ifli:
assert ifli.axes is not None
# always return one acquisition channel to simplify metadata handling
data = ifli.asarray(**kwargs)[:, channel : channel + 1].copy()
shape, axes, _ = _squeeze_axes(data.shape, ifli.axes, skip='FYX')
axes = axes.replace('E', 'C') # spectral axis
data = data.reshape(shape)
header = ifli.header
coords: dict[str, Any] = {}
coords['S'] = ['mean', 'real', 'imag']
coords['F'] = numpy.array(header['ModFrequency'])
# TODO: how to distinguish time- from frequency-domain?
# TODO: how to extract spatial coordinates?
if 'T' in axes:
coords['T'] = numpy.array(header['TimeTags'])
if 'C' in axes:
coords['C'] = numpy.array(header['SpectrumInfo'])
# if 'Z' in axes:
# coords['Z'] = numpy.array(header[])
metadata = _metadata(axes, shape, filename, **coords)
attrs = metadata['attrs']
attrs['ref_tau'] = (
header['RefLifetime'][channel],
header['RefLifetime2'][channel],
)
attrs['ref_tau_frac'] = (
header['RefLifetimeFrac'][channel],
1.0 - header['RefLifetimeFrac'][channel],
)
attrs['ref_phasor'] = numpy.array(header['RefDCPhasor'][channel])
from xarray import DataArray
return DataArray(data, **metadata)
[docs]
def read_sdt(
filename: str | PathLike[Any],
/,
*,
index: int = 0,
) -> DataArray:
"""Return time-resolved image and metadata from Becker & Hickl SDT file.
SDT files contain time-correlated single photon counting measurement data
and instrumentation parameters.
Parameters
----------
filename : str or Path
Name of SDT file to read.
index : int, optional, default: 0
Index of dataset to read in case the file contains multiple datasets.
Returns
-------
xarray.DataArray
Time correlated single photon counting image data with
:ref:`axes codes <axes>` ``'YXH'`` and type ``uint16``, ``uint32``,
or ``float32``.
- ``coords['H']``: times of the histogram bins.
- ``attrs['frequency']``: repetition frequency in MHz.
Raises
------
ValueError
File is not an SDT file containing time-correlated single photon
counting data.
Examples
--------
>>> data = read_sdt(fetch('tcspc.sdt'))
>>> data.values
array(...)
>>> data.dtype
dtype('uint16')
>>> data.shape
(128, 128, 256)
>>> data.dims
('Y', 'X', 'H')
>>> data.coords['H'].data
array(...)
>>> data.attrs['frequency'] # doctest: +NUMBER
79.99
"""
import sdtfile
with sdtfile.SdtFile(filename) as sdt:
if (
'SPC Setup & Data File' not in sdt.info.id
and 'SPC FCS Data File' not in sdt.info.id
):
# skip DLL data
raise ValueError(
f'{os.path.basename(filename)!r} '
'is not an SDT file containing TCSPC data'
)
# filter block types?
# sdtfile.BlockType(sdt.block_headers[index].block_type).contents
# == 'PAGE_BLOCK'
data = sdt.data[index]
times = sdt.times[index]
# TODO: get spatial coordinates from scanner settings?
metadata = _metadata('QYXH'[-data.ndim :], data.shape, filename, H=times)
metadata['attrs']['frequency'] = 1e-6 / float(times[-1] + times[1])
from xarray import DataArray
return DataArray(data, **metadata)
[docs]
def read_ptu(
filename: str | PathLike[Any],
/,
selection: Sequence[int | slice | EllipsisType | None] | None = None,
*,
trimdims: Sequence[Literal['T', 'C', 'H']] | str | None = None,
dtype: DTypeLike | None = None,
frame: int | None = None,
channel: int | None = None,
dtime: int | None = 0,
keepdims: bool = True,
) -> DataArray:
"""Return image histogram and metadata from PicoQuant PTU T3 mode file.
PTU files contain time-correlated single photon counting measurement data
and instrumentation parameters.
Parameters
----------
filename : str or Path
Name of PTU file to read.
selection : sequence of index types, optional
Indices for all dimensions:
- ``None``: return all items along axis (default).
- ``Ellipsis``: return all items along multiple axes.
- ``int``: return single item along axis.
- ``slice``: return chunk of axis.
``slice.step`` is binning factor.
If ``slice.step=-1``, integrate all items along axis.
trimdims : str, optional, default: 'TCH'
Axes to trim.
dtype : dtype-like, optional, default: uint16
Unsigned integer type of image histogram array.
Increase the bit depth to avoid overflows when integrating.
frame : int, optional
If < 0, integrate time axis, else return specified frame.
Overrides `selection` for axis ``T``.
channel : int, optional
If < 0, integrate channel axis, else return specified channel.
Overrides `selection` for axis ``C``.
dtime : int, optional, default: 0
Specifies number of bins in image histogram.
If 0 (default), return number of bins in one period.
If < 0, integrate delay time axis.
If > 0, return up to specified bin.
Overrides `selection` for axis ``H``.
keepdims : bool, optional, default: True
If true (default), reduced axes are left as size-one dimension.
Returns
-------
xarray.DataArray
Decoded TTTR T3 records as up to 5-dimensional image array
with :ref:`axes codes <axes>` ``'TYXCH'`` and type specified
in ``dtype``:
- ``coords['H']``: times of the histogram bins.
- ``attrs['frequency']``: repetition frequency in MHz.
Raises
------
ptufile.PqFileError
File is not a PicoQuant PTU file or is corrupted.
ValueError
File is not a PicoQuant PTU T3 mode file containing time-correlated
single photon counting data.
Examples
--------
>>> data = read_ptu(fetch('hazelnut_FLIM_single_image.ptu'))
>>> data.values
array(...)
>>> data.dtype
dtype('uint16')
>>> data.shape
(5, 256, 256, 1, 132)
>>> data.dims
('T', 'Y', 'X', 'C', 'H')
>>> data.coords['H'].data
array(...)
>>> data.attrs['frequency'] # doctest: +NUMBER
78.02
"""
import ptufile
from xarray import DataArray
with ptufile.PtuFile(filename, trimdims=trimdims) as ptu:
if not ptu.is_t3 or not ptu.is_image:
raise ValueError(
f'{os.path.basename(filename)!r} '
'is not a PTU file containing a T3 mode image'
)
data = ptu.decode_image(
selection,
dtype=dtype,
frame=frame,
channel=channel,
dtime=dtime,
keepdims=keepdims,
asxarray=True,
)
assert isinstance(data, DataArray)
data.attrs['frequency'] = ptu.frequency * 1e-6 # MHz
return data
[docs]
def read_flif(
filename: str | PathLike[Any],
/,
) -> DataArray:
"""Return frequency-domain image and metadata from FlimFast FLIF file.
FlimFast FLIF files contain camera images and metadata from
frequency-domain fluorescence lifetime measurements.
Parameters
----------
filename : str or Path
Name of FlimFast FLIF file to read.
Returns
-------
xarray.DataArray
Frequency-domain phase images with :ref:`axes codes <axes>` ``'THYX'``
and type ``uint16``:
- ``coords['H']``: phases in radians.
- ``attrs['frequency']``: repetition frequency in MHz.
- ``attrs['ref_phase']``: measured phase of reference.
- ``attrs['ref_mod']``: measured modulation of reference.
- ``attrs['ref_tauphase']``: lifetime from phase of reference.
- ``attrs['ref_taumod']``: lifetime from modulation of reference.
Raises
------
lfdfiles.LfdFileError
File is not a FlimFast FLIF file.
Examples
--------
>>> data = read_flif(fetch('flimfast.flif'))
>>> data.values
array(...)
>>> data.dtype
dtype('uint16')
>>> data.shape
(32, 220, 300)
>>> data.dims
('H', 'Y', 'X')
>>> data.coords['H'].data
array(...)
>>> data.attrs['frequency'] # doctest: +NUMBER
80.65
"""
import lfdfiles
with lfdfiles.FlimfastFlif(filename) as flif:
nphases = int(flif.header.phases)
data = flif.asarray()
if data.shape[0] < nphases:
raise ValueError(f'measured phases {data.shape[0]} < {nphases=}')
if data.shape[0] % nphases != 0:
data = data[: (data.shape[0] // nphases) * nphases]
data = data.reshape(-1, nphases, data.shape[1], data.shape[2])
if data.shape[0] == 1:
data = data[0]
axes = 'HYX'
else:
axes = 'THYX'
# TODO: check if phases are ordered
phases = numpy.radians(flif.records['phase'][:nphases])
metadata = _metadata(axes, data.shape, H=phases)
attrs = metadata['attrs']
attrs['frequency'] = float(flif.header.frequency)
attrs['ref_phase'] = float(flif.header.measured_phase)
attrs['ref_mod'] = float(flif.header.measured_mod)
attrs['ref_tauphase'] = float(flif.header.ref_tauphase)
attrs['ref_taumod'] = float(flif.header.ref_taumod)
from xarray import DataArray
return DataArray(data, **metadata)
[docs]
def read_fbd(
filename: str | PathLike[Any],
/,
*,
frame: int | None = None,
channel: int | None = None,
keepdims: bool = True,
laser_factor: float = -1.0,
) -> DataArray:
"""Return frequency-domain image and metadata from FLIMbox FBD file.
FDB files contain encoded data from the FLIMbox device, which can be
decoded to photon arrival windows, channels, and global times.
The encoding scheme depends on the FLIMbox device's firmware.
The FBD file format is undocumented.
This function may fail to produce expected results when files use unknown
firmware, do not contain image scans, settings were recorded incorrectly,
scanner and FLIMbox frequencies were out of sync, or scanner settings were
changed during acquisition.
Parameters
----------
filename : str or Path
Name of FLIMbox FBD file to read.
frame : int, optional
If None (default), return all frames.
If < 0, integrate time axis, else return specified frame.
channel : int, optional
If None (default), return all channels, else return specified channel.
keepdims : bool, optional
If true (default), reduced axes are left as size-one dimension.
laser_factor : float, optional
Factor to correct dwell_time/laser_frequency.
Returns
-------
xarray.DataArray
Frequency-domain image histogram with :ref:`axes codes <axes>`
``'TCYXH'`` and type ``uint16``:
- ``coords['H']``: phases in radians.
- ``attrs['frequency']``: repetition frequency in MHz.
Raises
------
lfdfiles.LfdFileError
File is not a FLIMbox FBD file.
Examples
--------
>>> data = read_fbd(fetch('convallaria_000$EI0S.fbd')) # doctest: +SKIP
>>> data.values # doctest: +SKIP
array(...)
>>> data.dtype # doctest: +SKIP
dtype('uint16')
>>> data.shape # doctest: +SKIP
(9, 2, 256, 256, 64)
>>> data.dims # doctest: +SKIP
('T', 'C', 'Y', 'X', 'H')
>>> data.coords['H'].data # doctest: +SKIP
array(...)
>>> data.attrs['frequency'] # doctest: +SKIP
40.0
"""
import lfdfiles
integrate_frames = 0 if frame is None or frame >= 0 else 1
with lfdfiles.FlimboxFbd(filename, laser_factor=laser_factor) as fbd:
data = fbd.asimage(None, None, integrate_frames=integrate_frames)
if integrate_frames:
frame = None
copy = False
axes = 'TCYXH'
if channel is None:
if not keepdims and data.shape[1] == 1:
data = data[:, 0]
axes = 'TYXH'
else:
if channel < 0 or channel >= data.shape[1]:
raise IndexError(f'{channel=} out of bounds')
if keepdims:
data = data[:, channel : channel + 1]
else:
data = data[:, channel]
axes = 'TYXH'
copy = True
if frame is None:
if not keepdims and data.shape[0] == 1:
data = data[0]
axes = axes[1:]
else:
if frame < 0 or frame > data.shape[0]:
raise IndexError(f'{frame=} out of bounds')
if keepdims:
data = data[frame : frame + 1]
else:
data = data[frame]
axes = axes[1:]
copy = True
if copy:
data = data.copy()
# TODO: return arrival window indices or micro-times as H coords?
phases = numpy.linspace(
0.0, numpy.pi * 2, data.shape[-1], endpoint=False
)
metadata = _metadata(axes, data.shape, H=phases)
attrs = metadata['attrs']
attrs['frequency'] = fbd.laser_frequency * 1e-6
from xarray import DataArray
return DataArray(data, **metadata)
[docs]
def read_b64(
filename: str | PathLike[Any],
/,
) -> DataArray:
"""Return intensity image and metadata from SimFCS B64 file.
B64 files contain one or more square intensity image(s), a carpet
of lines, or a stream of intensity data. B64 files contain no metadata.
Parameters
----------
filename : str or Path
Name of SimFCS B64 file to read.
Returns
-------
xarray.DataArray
Stack of square-sized intensity images of type ``int16``.
Raises
------
lfdfiles.LfdFileError
File is not a SimFCS B64 file.
ValueError
File does not contain an image stack.
Examples
--------
>>> data = read_b64(fetch('simfcs.b64'))
>>> data.values
array(...)
>>> data.dtype
dtype('int16')
>>> data.shape
(22, 1024, 1024)
>>> data.dtype
dtype('int16')
>>> data.dims
('I', 'Y', 'X')
"""
import lfdfiles
with lfdfiles.SimfcsB64(filename) as b64:
data = b64.asarray()
if data.ndim != 3:
raise ValueError(
f'{os.path.basename(filename)!r} '
'does not contain an image stack'
)
metadata = _metadata(b64.axes, data.shape, filename)
from xarray import DataArray
return DataArray(data, **metadata)
[docs]
def read_z64(
filename: str | PathLike[Any],
/,
) -> DataArray:
"""Return image and metadata from SimFCS Z64 file.
Z64 files contain stacks of square images such as intensity volumes
or time-domain fluorescence lifetime histograms acquired from
Becker & Hickl(r) TCSPC cards. Z64 files contain no metadata.
Parameters
----------
filename : str or Path
Name of SimFCS Z64 file to read.
Returns
-------
xarray.DataArray
Single or stack of square-sized images of type ``float32``.
Raises
------
lfdfiles.LfdFileError
File is not a SimFCS Z64 file.
Examples
--------
>>> data = read_z64(fetch('simfcs.z64'))
>>> data.values
array(...)
>>> data.dtype
dtype('float32')
>>> data.shape
(256, 256, 256)
>>> data.dims
('Q', 'Y', 'X')
"""
import lfdfiles
with lfdfiles.SimfcsZ64(filename) as z64:
data = z64.asarray()
metadata = _metadata(z64.axes, data.shape, filename)
from xarray import DataArray
return DataArray(data, **metadata)
[docs]
def read_bh(
filename: str | PathLike[Any],
/,
) -> DataArray:
"""Return image and metadata from SimFCS B&H file.
B&H files contain time-domain fluorescence lifetime histogram data,
acquired from Becker & Hickl(r) TCSPC cards, or converted from other
data sources. B&H files contain no metadata.
Parameters
----------
filename : str or Path
Name of SimFCS B&H file to read.
Returns
-------
xarray.DataArray
Time-domain fluorescence lifetime histogram with axes ``'HYX'``,
shape ``(256, 256, 256)``, and type ``float32``.
Raises
------
lfdfiles.LfdFileError
File is not a SimFCS B&H file.
Examples
--------
>>> data = read_bh(fetch('simfcs.b&h'))
>>> data.values
array(...)
>>> data.dtype
dtype('float32')
>>> data.shape
(256, 256, 256)
>>> data.dims
('H', 'Y', 'X')
"""
import lfdfiles
with lfdfiles.SimfcsBh(filename) as bnh:
assert bnh.axes is not None
data = bnh.asarray()
metadata = _metadata(bnh.axes.replace('Q', 'H'), data.shape, filename)
from xarray import DataArray
return DataArray(data, **metadata)
[docs]
def read_bhz(
filename: str | PathLike[Any],
/,
) -> DataArray:
"""Return image and metadata from SimFCS BHZ file.
BHZ files contain time-domain fluorescence lifetime histogram data,
acquired from Becker & Hickl(r) TCSPC cards, or converted from other
data sources. BHZ files contain no metadata.
Parameters
----------
filename : str or Path
Name of SimFCS BHZ file to read.
Returns
-------
xarray.DataArray
Time-domain fluorescence lifetime histogram with axes ``'HYX'``,
shape ``(256, 256, 256)``, and type ``float32``.
Raises
------
lfdfiles.LfdFileError
File is not a SimFCS BHZ file.
Examples
--------
>>> data = read_bhz(fetch('simfcs.bhz'))
>>> data.values
array(...)
>>> data.dtype
dtype('float32')
>>> data.shape
(256, 256, 256)
>>> data.dims
('H', 'Y', 'X')
"""
import lfdfiles
with lfdfiles.SimfcsBhz(filename) as bhz:
assert bhz.axes is not None
data = bhz.asarray()
metadata = _metadata(bhz.axes.replace('Q', 'H'), data.shape, filename)
from xarray import DataArray
return DataArray(data, **metadata)
def _metadata(
dims: Sequence[str] | None,
shape: tuple[int, ...],
/,
name: str | PathLike[Any] | None = None,
attrs: dict[str, Any] | None = None,
**coords: Any,
) -> dict[str, Any]:
"""Return xarray-style dims, coords, and attrs in a dict.
>>> _metadata('SYX', (3, 2, 1), S=['0', '1', '2'])
{'dims': ('S', 'Y', 'X'), 'coords': {'S': ['0', '1', '2']}, 'attrs': {}}
"""
assert dims is not None
dims = tuple(dims)
if len(dims) != len(shape):
raise ValueError(
f'dims do not match shape {len(dims)} != {len(shape)}'
)
coords = {dim: coords[dim] for dim in dims if dim in coords}
if attrs is None:
attrs = {}
metadata = {'dims': dims, 'coords': coords, 'attrs': attrs}
if name:
metadata['name'] = os.path.basename(name)
return metadata
def _squeeze_axes(
shape: Sequence[int],
axes: str,
/,
skip: str = 'XY',
) -> tuple[tuple[int, ...], str, tuple[bool, ...]]:
"""Return shape and axes with length-1 dimensions removed.
Remove unused dimensions unless their axes are listed in `skip`.
Adapted from the tifffile library.
Parameters
----------
shape : tuple of ints
Sequence of dimension sizes.
axes : str
Character codes for dimensions in `shape`.
skip : str, optional
Character codes for dimensions whose length-1 dimensions are
not removed. The default is 'XY'.
Returns
-------
shape : tuple of ints
Sequence of dimension sizes with length-1 dimensions removed.
axes : str
Character codes for dimensions in output `shape`.
squeezed : str
Dimensions were kept (True) or removed (False).
Examples
--------
>>> _squeeze_axes((5, 1, 2, 1, 1), 'TZYXC')
((5, 2, 1), 'TYX', (True, False, True, True, False))
>>> _squeeze_axes((1,), 'Q')
((1,), 'Q', (True,))
"""
if len(shape) != len(axes):
raise ValueError(f'{len(shape)=} != {len(axes)=}')
if not axes:
return tuple(shape), axes, ()
squeezed: list[bool] = []
shape_squeezed: list[int] = []
axes_squeezed: list[str] = []
for size, ax in zip(shape, axes):
if size > 1 or ax in skip:
squeezed.append(True)
shape_squeezed.append(size)
axes_squeezed.append(ax)
else:
squeezed.append(False)
if len(shape_squeezed) == 0:
squeezed[-1] = True
shape_squeezed.append(shape[-1])
axes_squeezed.append(axes[-1])
return tuple(shape_squeezed), ''.join(axes_squeezed), tuple(squeezed)