"""Private auxiliary and convenience functions.
"""
from __future__ import annotations
__all__: list[str] = [
'chunk_iter',
'dilate_coordinates',
'kwargs_notnone',
'parse_harmonic',
'parse_kwargs',
'phasor_from_polar_scalar',
'phasor_to_polar_scalar',
'scale_matrix',
'sort_coordinates',
'update_kwargs',
]
import math
import numbers
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from ._typing import Any, Sequence, ArrayLike, Literal, NDArray, Iterator
import numpy
[docs]
def parse_kwargs(
kwargs: dict[str, Any],
/,
*keys: str,
_del: bool = True,
**keyvalues: Any,
) -> dict[str, Any]:
"""Return dict with keys from keys|keyvals and values from kwargs|keyvals.
If `_del` is true (default), existing keys are deleted from `kwargs`.
>>> kwargs = {'one': 1, 'two': 2, 'four': 4}
>>> kwargs2 = parse_kwargs(kwargs, 'two', 'three', four=None, five=5)
>>> kwargs == {'one': 1}
True
>>> kwargs2 == {'two': 2, 'four': 4, 'five': 5}
True
"""
result = {}
for key in keys:
if key in kwargs:
result[key] = kwargs[key]
if _del:
del kwargs[key]
for key, value in keyvalues.items():
if key in kwargs:
result[key] = kwargs[key]
if _del:
del kwargs[key]
else:
result[key] = value
return result
[docs]
def update_kwargs(kwargs: dict[str, Any], /, **keyvalues: Any) -> None:
"""Update dict with keys and values if keys do not already exist.
>>> kwargs = {'one': 1}
>>> update_kwargs(kwargs, one=None, two=2)
>>> kwargs == {'one': 1, 'two': 2}
True
"""
for key, value in keyvalues.items():
if key not in kwargs:
kwargs[key] = value
[docs]
def kwargs_notnone(**kwargs: Any) -> dict[str, Any]:
"""Return dict of kwargs which values are not None.
>>> kwargs_notnone(one=1, none=None)
{'one': 1}
"""
return dict(item for item in kwargs.items() if item[1] is not None)
[docs]
def scale_matrix(factor: float, origin: Sequence[float]) -> NDArray[Any]:
"""Return matrix to scale homogeneous coordinates by factor around origin.
Parameters
----------
factor: float
Scale factor.
origin: (float, float)
Coordinates of point around which to scale.
Returns
-------
matrix: ndarray
A 3x3 homogeneous transformation matrix.
Examples
--------
>>> scale_matrix(1.1, (0.0, 0.5))
array([[1.1, 0, -0],
[0, 1.1, -0.05],
[0, 0, 1]])
"""
mat = numpy.diag((factor, factor, 1.0))
mat[:2, 2] = origin[:2]
mat[:2, 2] *= 1.0 - factor
return mat
[docs]
def sort_coordinates(
real: ArrayLike,
imag: ArrayLike,
/,
origin: tuple[float, float] | None = None,
) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]:
"""Return cartesian coordinates sorted counterclockwise around origin.
Parameters
----------
real, imag : array_like
Coordinates to be sorted.
origin : (float, float)
Coordinates around which to sort by angle.
Returns
-------
real, imag : ndarray
Coordinates sorted by angle.
indices : ndarray
Indices used to reorder coordinates.
Examples
--------
>>> sort_coordinates([0, 1, 2, 3], [0, 1, -1, 0])
(array([2, 3, 1, 0]), array([-1, 0, 1, 0]), array([2, 3, 1, 0]...))
"""
x, y = numpy.atleast_1d(real, imag)
if x.ndim != 1 or x.shape != y.shape:
raise ValueError(f'invalid {x.shape=} or {y.shape=}')
if x.size < 4:
return x, y, numpy.arange(x.size)
if origin is None:
origin = x.mean(), y.mean()
indices = numpy.argsort(numpy.arctan2(y - origin[1], x - origin[0]))
return x[indices], y[indices], indices
[docs]
def dilate_coordinates(
real: ArrayLike,
imag: ArrayLike,
offset: float,
/,
) -> tuple[NDArray[Any], NDArray[Any]]:
"""Return dilated coordinates.
Parameters
----------
real, imag : array_like
Coordinates of convex hull, sorted by angle.
offset : float
Amount by which to dilate coordinates.
Returns
-------
real, imag : ndarray
Coordinates dilated by offset.
Examples
--------
>>> dilate_coordinates([2, 3, 1, 0], [-1, 0, 1, 0], 0.05)
(array([2.022, 3.05, 0.9776, -0.05]), array([-1.045, 0, 1.045, 0]))
"""
x = numpy.asanyarray(real, dtype=numpy.float64)
y = numpy.asanyarray(imag, dtype=numpy.float64)
if x.ndim != 1 or x.shape != y.shape or x.size < 1:
raise ValueError(f'invalid {x.shape=} or {y.shape=}')
if x.size > 1:
dx = numpy.diff(numpy.diff(x, prepend=x[-1], append=x[0]))
dy = numpy.diff(numpy.diff(y, prepend=y[-1], append=y[0]))
else:
# TODO: this assumes coordinate on universal semicircle
dx = numpy.diff(x, append=0.5)
dy = numpy.diff(y, append=0.0)
s = numpy.hypot(dx, dy)
dx /= s
dx *= -offset
dx += x
dy /= s
dy *= -offset
dy += y
return dx, dy
[docs]
def phasor_to_polar_scalar(
real: float,
imag: float,
/,
*,
degree: bool = False,
percent: bool = False,
) -> tuple[float, float]:
"""Return polar from scalar phasor coordinates.
>>> phasor_to_polar_scalar(1.0, 0.0, degree=True, percent=True)
(0.0, 100.0)
"""
phi = math.atan2(imag, real)
mod = math.hypot(imag, real)
if degree:
phi = math.degrees(phi)
if percent:
mod *= 100.0
return phi, mod
[docs]
def phasor_from_polar_scalar(
phase: float,
modulation: float,
/,
*,
degree: bool = False,
percent: bool = False,
) -> tuple[float, float]:
"""Return phasor from scalar polar coordinates.
>>> phasor_from_polar_scalar(0.0, 100.0, degree=True, percent=True)
(1.0, 0.0)
"""
if degree:
phase = math.radians(phase)
if percent:
modulation /= 100.0
real = modulation * math.cos(phase)
imag = modulation * math.sin(phase)
return real, imag
[docs]
def parse_harmonic(
harmonic: int | Sequence[int] | Literal['all'] | str | None,
harmonic_max: int | None = None,
/,
) -> tuple[list[int], bool]:
"""Return parsed harmonic parameter.
This function performs common, but not necessarily all, verifications
of user-provided `harmonic` parameter.
Parameters
----------
harmonic : int, list of int, 'all', or None
Harmonic parameter to parse.
harmonic_max : int, optional
Maximum value allowed in `hamonic`. Must be one or greater.
To verify against known number of signal samples,
pass ``samples // 2``.
If `harmonic='all'`, a range of harmonics from one to `harmonic_max`
(included) is returned.
Returns
-------
harmonic : list of int
Parsed list of harmonics.
has_harmonic_axis : bool
False if `harmonic` input parameter is a scalar integer.
Raises
------
IndexError
Any element is out of range `[1..harmonic_max]`.
ValueError
Elements are not unique.
Harmonic is empty.
String input is not 'all'.
`harmonic_max` is smaller than 1.
TypeError
Any element is not an integer.
`harmonic` is `'all'` and `harmonic_max` is None.
"""
if harmonic_max is not None and harmonic_max < 1:
raise ValueError(f'{harmonic_max=} < 1')
if harmonic is None:
return [1], False
if isinstance(harmonic, (int, numbers.Integral)):
if harmonic < 1 or (
harmonic_max is not None and harmonic > harmonic_max
):
raise IndexError(f'{harmonic=} out of range [1..{harmonic_max}]')
return [int(harmonic)], False
if isinstance(harmonic, str):
if harmonic == 'all':
if harmonic_max is None:
raise TypeError(
f'maximum harmonic must be specified for {harmonic=!r}'
)
return list(range(1, harmonic_max + 1)), True
raise ValueError(f'{harmonic=!r} is not a valid harmonic')
h = numpy.atleast_1d(numpy.asarray(harmonic))
if h.size == 0:
raise ValueError(f'{harmonic=} is empty')
if h.dtype.kind not in 'iu' or h.ndim != 1:
raise TypeError(f'{harmonic=} element not an integer')
if numpy.any(h < 1):
raise IndexError(f'{harmonic=} element < 1')
if harmonic_max is not None and numpy.any(h > harmonic_max):
raise IndexError(f'{harmonic=} element > {harmonic_max}]')
if numpy.unique(h).size != h.size:
raise ValueError(f'{harmonic=} elements must be unique')
return h.tolist(), True
[docs]
def chunk_iter(
shape: tuple[int, ...],
chunk_shape: tuple[int, ...],
/,
axes: str | Sequence[str] | None = None,
*,
pattern: str | None = None,
squeeze: bool = False,
use_index: bool = False,
) -> Iterator[tuple[tuple[int | slice, ...], str, bool]]:
"""Yield indices and labels of chunks from ndarray's shape.
Parameters
----------
shape : tuple of int
Shape of C-order ndarray to chunk.
chunk_shape : tuple of int
Shape of chunks in the most significant dimensions.
axes : str or sequence of str, optional
Labels for each axis in shape if `pattern` is None.
pattern : str, optional
String to format chunk indices.
If None, use ``_[{axes[index]}{chunk_index[index]}]`` for each axis.
squeeze : bool
If true, do not include length-1 chunked dimensions in label
unless dimensions are part of `chunk_shape`.
Applies only if `pattern` is None.
use_index : bool
If true, use indices of chunks in `shape` instead of chunk indices to
format pattern.
Yields
------
index : tuple of int or slice
Indices of chunk in ndarray.
label : str
Pattern formatted with chunk indices.
cropped : bool
True if chunk exceeds any border of ndarray.
Indexing ndarray with `index` will yield a slice smaller than
`chunk_shape`.
Examples
--------
>>> list(chunk_iter((2, 2), (2,), pattern='Y{}'))
[((0, slice(0, 2, 1)), 'Y0', False), ((1, slice(0, 2, 1)), 'Y1', False)]
Chunk a four-dimensional image stack into 2x2 sized image tiles:
>>> stack = numpy.zeros((2, 3, 4, 5))
>>> for index, label, cropped in chunk_iter(stack.shape, (2, 2)):
... chunk = stack[index]
...
"""
ndim = len(shape)
sep = '_'
if axes is None:
axes = sep * ndim
sep = ''
elif ndim != len(axes):
raise ValueError(f'{len(shape)=} != {len(axes)=}')
if pattern is not None:
try:
pattern.format(*shape)
except Exception as exc:
raise ValueError('pattern cannot be formatted') from exc
# number of high dimensions not included in chaunk_shape
hdim = ndim - len(chunk_shape)
if hdim < 0:
raise ValueError(f'{len(shape)=} < {len(chunk_shape)=}')
if hdim > 0:
# prepend length-1 dimensions
chunk_shape = ((1,) * hdim) + chunk_shape
chunked_shape = []
pattern_list = []
for i, (size, chunk_size, ax) in enumerate(zip(shape, chunk_shape, axes)):
if size <= 0:
raise ValueError('shape must contain positive sizes')
if chunk_size <= 0:
raise ValueError('chunk_shape must contain positive sizes')
div, mod = divmod(size, chunk_size)
chunked_shape.append(div + 1 if mod else div)
if not squeeze or chunked_shape[-1] > 1:
if use_index:
digits = int(math.log10(size)) + 1
else:
digits = int(math.log10(chunked_shape[-1])) + 1
pattern_list.append(f'{sep}{ax}{{{i}:0{digits}d}}')
if pattern is None:
pattern = ''.join(pattern_list)
chunk_index: tuple[int, ...]
for chunk_index in numpy.ndindex(tuple(chunked_shape)):
index: tuple[int | slice, ...] = tuple(
(
chunk_index[i]
if i < hdim
else slice(
chunk_index[i] * chunk_shape[i],
(chunk_index[i] + 1) * chunk_shape[i],
1,
)
)
for i in range(ndim)
)
if use_index:
format_index = tuple(
chunk_index[i] * chunk_shape[i] for i in range(ndim)
)
else:
format_index = chunk_index
yield (
index,
pattern.format(*format_index),
any(
(chunk_index[i] + 1) * chunk_shape[i] > shape[i]
for i in range(ndim)
),
)