Source code for phasorpy.phasor

"""Calculate, convert, calibrate, and reduce phasor coordinates.

The ``phasorpy.phasor`` module provides functions to:

- calculate phasor coordinates from time-resolved and spectral signals:

  - :py:func:`phasor_from_signal`

- synthesize signals from phasor coordinates or lifetimes:

  - :py:func:`phasor_to_signal`
  - :py:func:`lifetime_to_signal`

- convert between phasor coordinates and single- or multi-component
  fluorescence lifetimes:

  - :py:func:`phasor_from_lifetime`
  - :py:func:`phasor_from_apparent_lifetime`
  - :py:func:`phasor_to_apparent_lifetime`

- convert to and from polar coordinates (phase and modulation):

  - :py:func:`phasor_from_polar`
  - :py:func:`phasor_to_polar`
  - :py:func:`polar_from_apparent_lifetime`
  - :py:func:`polar_to_apparent_lifetime`

- transform phasor coordinates:

  - :py:func:`phasor_transform`
  - :py:func:`phasor_multiply`
  - :py:func:`phasor_divide`
  - :py:func:`phasor_normalize`

- calibrate phasor coordinates with reference of known fluorescence
  lifetime:

  - :py:func:`phasor_calibrate`
  - :py:func:`polar_from_reference`
  - :py:func:`polar_from_reference_phasor`

- reduce dimensionality of arrays of phasor coordinates:

  - :py:func:`phasor_center`
  - :py:func:`phasor_to_principal_plane`

- calculate phasor coordinates for FRET donor and acceptor channels:

  - :py:func:`phasor_from_fret_donor`
  - :py:func:`phasor_from_fret_acceptor`

- convert between single component lifetimes and optimal frequency:

  - :py:func:`lifetime_to_frequency`
  - :py:func:`lifetime_from_frequency`

- convert between fractional intensities and pre-exponential amplitudes:

  - :py:func:`lifetime_fraction_from_amplitude`
  - :py:func:`lifetime_fraction_to_amplitude`

- calculate phasor coordinates on semicircle at other harmonics:

  - :py:func:`phasor_at_harmonic`

- filter phasor coordinates:

  - :py:func:`phasor_filter_median`
  - :py:func:`phasor_threshold`

"""

from __future__ import annotations

__all__ = [
    'lifetime_fraction_from_amplitude',
    'lifetime_fraction_to_amplitude',
    'lifetime_from_frequency',
    'lifetime_to_frequency',
    'lifetime_to_signal',
    'phasor_at_harmonic',
    'phasor_calibrate',
    'phasor_center',
    'phasor_divide',
    'phasor_filter_median',
    'phasor_from_apparent_lifetime',
    'phasor_from_fret_acceptor',
    'phasor_from_fret_donor',
    'phasor_from_lifetime',
    'phasor_from_polar',
    'phasor_from_signal',
    'phasor_multiply',
    'phasor_normalize',
    'phasor_semicircle',
    'phasor_threshold',
    'phasor_to_apparent_lifetime',
    'phasor_to_complex',
    'phasor_to_polar',
    'phasor_to_principal_plane',
    'phasor_to_signal',
    'phasor_transform',
    'polar_from_apparent_lifetime',
    'polar_from_reference',
    'polar_from_reference_phasor',
    'polar_to_apparent_lifetime',
]

import math
from collections.abc import Sequence
from typing import TYPE_CHECKING

if TYPE_CHECKING:
    from ._typing import (
        Any,
        NDArray,
        ArrayLike,
        DTypeLike,
        Callable,
        Literal,
    )

import numpy

from ._phasorpy import (
    _gaussian_signal,
    _median_filter_2d,
    _phasor_at_harmonic,
    _phasor_divide,
    _phasor_from_apparent_lifetime,
    _phasor_from_fret_acceptor,
    _phasor_from_fret_donor,
    _phasor_from_lifetime,
    _phasor_from_polar,
    _phasor_from_signal,
    _phasor_from_single_lifetime,
    _phasor_multiply,
    _phasor_threshold_closed,
    _phasor_threshold_mean_closed,
    _phasor_threshold_mean_open,
    _phasor_threshold_nan,
    _phasor_threshold_open,
    _phasor_to_apparent_lifetime,
    _phasor_to_polar,
    _phasor_transform,
    _phasor_transform_const,
    _polar_from_apparent_lifetime,
    _polar_from_reference,
    _polar_from_reference_phasor,
    _polar_from_single_lifetime,
    _polar_to_apparent_lifetime,
)
from ._utils import parse_harmonic, parse_signal_axis
from .utils import number_threads


[docs] def phasor_from_signal( signal: ArrayLike, /, *, axis: int | str | None = None, harmonic: int | Sequence[int] | Literal['all'] | str | None = None, sample_phase: ArrayLike | None = None, use_fft: bool | None = None, rfft: Callable[..., NDArray[Any]] | None = None, dtype: DTypeLike = None, normalize: bool = True, num_threads: int | None = None, ) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]: r"""Return phasor coordinates from signal. Parameters ---------- signal : array_like Frequency-domain, time-domain, or hyperspectral data. A minimum of three samples are required along `axis`. The samples must be uniformly spaced. axis : int or str, optional Axis over which to compute phasor coordinates. By default, the 'H' or 'C' axes if signal contains such dimension names, else the last axis (-1). harmonic : int, sequence of int, or 'all', optional Harmonics to return. If `'all'`, return all harmonics for `signal` samples along `axis`. Else, harmonics must be at least one and no larger than half the number of `signal` samples along `axis`. The default is the first harmonic (fundamental frequency). A minimum of `harmonic * 2 + 1` samples are required along `axis` to calculate correct phasor coordinates at `harmonic`. sample_phase : array_like, optional Phase values (in radians) of `signal` samples along `axis`. If None (default), samples are assumed to be uniformly spaced along one period. The array size must equal the number of samples along `axis`. Cannot be used with `harmonic!=1` or `use_fft=True`. use_fft : bool, optional If true, use a real forward Fast Fourier Transform (FFT). If false, use a Cython implementation that is optimized (faster and resource saving) for calculating few harmonics. By default, FFT is only used when all or at least 8 harmonics are calculated, or `rfft` is specified. rfft : callable, optional Drop-in replacement function for ``numpy.fft.rfft``. For example, ``scipy.fft.rfft`` or ``mkl_fft._numpy_fft.rfft``. Used to calculate the real forward FFT. dtype : dtype_like, optional Data type of output arrays. Either float32 or float64. The default is float64 unless the `signal` is float32. normalize : bool, optional Return normalized phasor coordinates. If true (default), return average of `signal` along `axis` and Fourier coefficients divided by sum of `signal` along `axis`. Else, return sum of `signal` along `axis` and unscaled Fourier coefficients. Un-normalized phasor coordinates cannot be used with most of PhasorPy's functions but may be required for intermediate processing. num_threads : int, optional Number of OpenMP threads to use for parallelization when not using FFT. By default, multi-threading is disabled. If zero, up to half of logical CPUs are used. OpenMP may not be available on all platforms. Returns ------- mean : ndarray Average of `signal` along `axis` (zero harmonic). real : ndarray Real component of phasor coordinates at `harmonic` along `axis`. imag : ndarray Imaginary component of phasor coordinates at `harmonic` along `axis`. Raises ------ ValueError The `signal` has less than three samples along `axis`. The `sample_phase` size does not equal the number of samples along `axis`. IndexError `harmonic` is smaller than 1 or greater than half the samples along `axis`. TypeError The `signal`, `dtype`, or `harmonic` types are not supported. See Also -------- phasorpy.phasor.phasor_to_signal phasorpy.phasor.phasor_normalize :ref:`sphx_glr_tutorials_benchmarks_phasorpy_phasor_from_signal.py` Notes ----- The normalized phasor coordinates `real` (:math:`G`), `imag` (:math:`S`), and average intensity `mean` (:math:`F_{DC}`) are calculated from :math:`K\ge3` samples of the signal :math:`F` af `harmonic` :math:`h` according to: .. math:: F_{DC} &= \frac{1}{K} \sum_{k=0}^{K-1} F_{k} G &= \frac{1}{K} \sum_{k=0}^{K-1} F_{k} \cos{\left (2 \pi h \frac{k}{K} \right )} \cdot \frac{1}{F_{DC}} S &= \frac{1}{K} \sum_{k=0}^{K-1} F_{k} \sin{\left (2 \pi h \frac{k}{K} \right )} \cdot \frac{1}{F_{DC}} If :math:`F_{DC} = 0`, the phasor coordinates are undefined (:math:`NaN` or :math:`\infty`). Use `NaN`-aware software to further process the phasor coordinates. The phasor coordinates may be zero, for example, in case of only constant background in time-resolved signals, or as the result of linear combination of non-zero spectral phasors coordinates. Examples -------- Calculate phasor coordinates of a phase-shifted sinusoidal waveform: >>> sample_phase = numpy.linspace(0, 2 * math.pi, 5, endpoint=False) >>> signal = 1.1 * (numpy.cos(sample_phase - 0.785398) * 2 * 0.707107 + 1) >>> phasor_from_signal(signal) # doctest: +NUMBER (array(1.1), array(0.5), array(0.5)) The sinusoidal signal does not have a second harmonic component: >>> phasor_from_signal(signal, harmonic=2) # doctest: +NUMBER (array(1.1), array(0.0), array(0.0)) """ # TODO: C-order not required by rfft? # TODO: preserve array subtypes? axis, _ = parse_signal_axis(signal, axis) signal = numpy.asarray(signal, order='C') if signal.dtype.kind not in 'uif': raise TypeError(f'signal must be real valued, not {signal.dtype=}') samples = numpy.size(signal, axis) # this also verifies axis and ndim >= 1 if samples < 3: raise ValueError(f'not enough {samples=} along {axis=}') if dtype is None: dtype = numpy.float32 if signal.dtype.char == 'f' else numpy.float64 dtype = numpy.dtype(dtype) if dtype.kind != 'f': raise TypeError(f'{dtype=} not supported') harmonic, keepdims = parse_harmonic(harmonic, samples // 2) num_harmonics = len(harmonic) if sample_phase is not None: if use_fft: raise ValueError('sample_phase cannot be used with FFT') if num_harmonics > 1 or harmonic[0] != 1: raise ValueError('sample_phase cannot be used with harmonic != 1') sample_phase = numpy.atleast_1d( numpy.asarray(sample_phase, dtype=numpy.float64) ) if sample_phase.ndim != 1 or sample_phase.size != samples: raise ValueError(f'{sample_phase.shape=} != ({samples},)') if use_fft is None: use_fft = sample_phase is None and ( rfft is not None or num_harmonics > 7 or num_harmonics >= samples // 2 ) if use_fft: if rfft is None: rfft = numpy.fft.rfft fft: NDArray[Any] = rfft( signal, axis=axis, norm='forward' if normalize else 'backward' ) mean = fft.take(0, axis=axis).real if not mean.ndim == 0: mean = numpy.ascontiguousarray(mean, dtype) fft = fft.take(harmonic, axis=axis) real = numpy.ascontiguousarray(fft.real, dtype) imag = numpy.ascontiguousarray(fft.imag, dtype) del fft if not keepdims and real.shape[axis] == 1: dc = mean real = real.squeeze(axis) imag = imag.squeeze(axis) else: # make broadcastable dc = numpy.expand_dims(mean, 0) real = numpy.moveaxis(real, axis, 0) imag = numpy.moveaxis(imag, axis, 0) if normalize: with numpy.errstate(divide='ignore', invalid='ignore'): real /= dc imag /= dc numpy.negative(imag, out=imag) if not keepdims and real.ndim == 0: return mean.squeeze(), real.squeeze(), imag.squeeze() return mean, real, imag num_threads = number_threads(num_threads) sincos = numpy.empty((num_harmonics, samples, 2)) for i, h in enumerate(harmonic): if sample_phase is None: phase = numpy.linspace( 0, h * math.pi * 2.0, samples, endpoint=False, dtype=numpy.float64, ) else: phase = sample_phase sincos[i, :, 0] = numpy.cos(phase) sincos[i, :, 1] = numpy.sin(phase) # reshape to 3D with axis in middle axis = axis % signal.ndim shape0 = signal.shape[:axis] shape1 = signal.shape[axis + 1 :] size0 = math.prod(shape0) size1 = math.prod(shape1) phasor = numpy.empty((num_harmonics * 2 + 1, size0, size1), dtype) signal = signal.reshape((size0, samples, size1)) _phasor_from_signal(phasor, signal, sincos, normalize, num_threads) # restore original shape shape = shape0 + shape1 mean = phasor[0].reshape(shape) if keepdims: shape = (num_harmonics,) + shape real = phasor[1 : num_harmonics + 1].reshape(shape) imag = phasor[1 + num_harmonics :].reshape(shape) if shape: return mean, real, imag return mean.squeeze(), real.squeeze(), imag.squeeze()
[docs] def phasor_to_signal( mean: ArrayLike, real: ArrayLike, imag: ArrayLike, /, *, samples: int = 64, harmonic: int | Sequence[int] | Literal['all'] | str | None = None, axis: int = -1, irfft: Callable[..., NDArray[Any]] | None = None, ) -> NDArray[numpy.float64]: """Return signal from phasor coordinates using inverse Fourier transform. Parameters ---------- mean : array_like Average signal intensity (DC). If not scalar, shape must match the last dimensions of `real`. real : array_like Real component of phasor coordinates. Multiple harmonics, if any, must be in the first axis. imag : array_like Imaginary component of phasor coordinates. Must be same shape as `real`. samples : int, default: 64 Number of signal samples to return. Must be at least three. harmonic : int, sequence of int, or 'all', optional Harmonics included in first axis of `real` and `imag`. If None, lower harmonics are inferred from the shapes of phasor coordinates (most commonly, lower harmonics are present if the number of dimensions of `mean` is one less than `real`). If `'all'`, the harmonics in the first axis of phasor coordinates are the lower harmonics necessary to synthesize `samples`. Else, harmonics must be at least one and no larger than half of `samples`. The phasor coordinates of missing harmonics are zeroed if `samples` is greater than twice the number of harmonics. axis : int, optional Axis at which to return signal samples. The default is the last axis (-1). irfft : callable, optional Drop-in replacement function for ``numpy.fft.irfft``. For example, ``scipy.fft.irfft`` or ``mkl_fft._numpy_fft.irfft``. Used to calculate the real inverse FFT. Returns ------- signal : ndarray Reconstructed signal with samples of one period along the last axis. See Also -------- phasorpy.phasor.phasor_from_signal Notes ----- The reconstructed signal may be undefined if the input phasor coordinates, or signal mean contain `NaN` values. Examples -------- Reconstruct exact signal from phasor coordinates at all harmonics: >>> sample_phase = numpy.linspace(0, 2 * math.pi, 5, endpoint=False) >>> signal = 1.1 * (numpy.cos(sample_phase - 0.785398) * 2 * 0.707107 + 1) >>> signal array([2.2, 2.486, 0.8566, -0.4365, 0.3938]) >>> phasor_to_signal( ... *phasor_from_signal(signal, harmonic='all'), ... harmonic='all', ... samples=len(signal) ... ) # doctest: +NUMBER array([2.2, 2.486, 0.8566, -0.4365, 0.3938]) Reconstruct a single-frequency waveform from phasor coordinates at first harmonic: >>> phasor_to_signal(1.1, 0.5, 0.5, samples=5) # doctest: +NUMBER array([2.2, 2.486, 0.8566, -0.4365, 0.3938]) """ if samples < 3: raise ValueError(f'{samples=} < 3') mean = numpy.array(mean, ndmin=0, copy=True) real = numpy.array(real, ndmin=0, copy=True) imag = numpy.array(imag, ndmin=1, copy=True) harmonic_ = harmonic harmonic, has_harmonic_axis = parse_harmonic(harmonic, samples // 2) if real.ndim == 1 and len(harmonic) > 1 and real.shape[0] == len(harmonic): # single axis contains harmonic has_harmonic_axis = True real = real[..., None] imag = imag[..., None] keepdims = mean.ndim > 0 else: keepdims = mean.ndim > 0 or real.ndim > 0 mean, real = numpy.atleast_1d(mean, real) if real.dtype.kind != 'f' or imag.dtype.kind != 'f': raise ValueError(f'{real.dtype=} or {imag.dtype=} not floating point') if real.shape != imag.shape: raise ValueError(f'{real.shape=} != {imag.shape=}') if ( harmonic_ is None and mean.size > 1 and mean.ndim + 1 == real.ndim and mean.shape == real.shape[1:] ): # infer harmonic from shapes of mean and real harmonic = list(range(1, real.shape[0] + 1)) has_harmonic_axis = True if not has_harmonic_axis: real = real[None, ...] imag = imag[None, ...] if len(harmonic) != real.shape[0]: raise ValueError(f'{len(harmonic)=} != {real.shape[0]=}') real *= mean imag *= mean numpy.negative(imag, out=imag) fft: NDArray[Any] = numpy.zeros( (samples // 2 + 1, *real.shape[1:]), dtype=numpy.complex128 ) fft.real[[0]] = mean fft.real[harmonic] = real[: len(harmonic)] fft.imag[harmonic] = imag[: len(harmonic)] if irfft is None: irfft = numpy.fft.irfft signal: NDArray[Any] = irfft(fft, samples, axis=0, norm='forward') if not keepdims: signal = signal[:, 0] elif axis != 0: signal = numpy.moveaxis(signal, 0, axis) return signal
[docs] def lifetime_to_signal( frequency: float, lifetime: ArrayLike, fraction: ArrayLike | None = None, *, mean: ArrayLike | None = None, background: ArrayLike | None = None, samples: int = 64, harmonic: int | Sequence[int] | Literal['all'] | str | None = None, zero_phase: float | None = None, zero_stdev: float | None = None, preexponential: bool = False, unit_conversion: float = 1e-3, ) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]: r"""Return synthetic signal from lifetime components. Return synthetic signal, instrument response function (IRF), and time axis, sampled over one period of the fundamental frequency. The signal is convoluted with the IRF, which is approximated by a normal distribution. Parameters ---------- frequency : float Fundamental laser pulse or modulation frequency in MHz. lifetime : array_like Lifetime components in ns. fraction : array_like, optional Fractional intensities or pre-exponential amplitudes of the lifetime components. Fractions are normalized to sum to 1. Must be specified if `lifetime` is not a scalar. mean : array_like, optional, default: 1.0 Average signal intensity (DC). Must be scalar for now. background : array_like, optional, default: 0.0 Background signal intensity. Must be smaller than `mean`. samples : int, default: 64 Number of signal samples to return. Must be at least 16. harmonic : int, sequence of int, or 'all', optional, default: 'all' Harmonics used to synthesize signal. If `'all'`, all harmonics are used. Else, harmonics must be at least one and no larger than half of `samples`. Use `'all'` to synthesize an exponential time-domain decay signal, or `1` to synthesize a homodyne signal. zero_phase : float, optional Position of instrument response function in radians. Must be in range 0.0 to :math:`\pi`. The default is the 8th sample. zero_stdev : float, optional Standard deviation of instrument response function in radians. Must be at least 1.5 samples and no more than one tenth of samples to allow for sufficient sampling of the function. The default is 1.5 samples. Increase `samples` to narrow the IRF. preexponential : bool, optional, default: False If true, `fraction` values are pre-exponential amplitudes, else fractional intensities. unit_conversion : float, optional, default: 1e-3 Product of `frequency` and `lifetime` units' prefix factors. The default is 1e-3 for MHz and ns, or Hz and ms. Use 1.0 for Hz and s. Returns ------- signal : ndarray Signal generated from lifetimes at frequency, convoluted with instrument response function. zero : ndarray Instrument response function. time : ndarray Time for each sample in signal in units of `lifetime`. See Also -------- phasorpy.phasor.phasor_from_lifetime phasorpy.phasor.phasor_to_signal :ref:`sphx_glr_tutorials_api_phasorpy_lifetime_to_signal.py` Notes ----- This implementation is based on an inverse digital Fourier transform (DFT). Because DFT cannot be used on signals with discontinuities (for example, an exponential decay starting at zero) without producing strong artifacts (ripples), the signal is convoluted with a continuous instrument response function (IRF). The minimum width of the IRF is limited due to sampling requirements. Examples -------- Synthesize a multi-exponential time-domain decay signal for two lifetime components of 4.2 and 0.9 ns at 40 MHz: >>> signal, zero, times = lifetime_to_signal( ... 40, [4.2, 0.9], fraction=[0.8, 0.2], samples=16 ... ) >>> signal # doctest: +NUMBER array([0.2846, 0.1961, 0.1354, ..., 0.8874, 0.6029, 0.4135]) Synthesize a homodyne frequency-domain waveform signal for a single lifetime: >>> signal, zero, times = lifetime_to_signal( ... 40.0, 4.2, samples=16, harmonic=1 ... ) >>> signal # doctest: +NUMBER array([0.2047, -0.05602, -0.156, ..., 1.471, 1.031, 0.5865]) """ if harmonic is None: harmonic = 'all' all_hamonics = harmonic == 'all' harmonic, _ = parse_harmonic(harmonic, samples // 2) if samples < 16: raise ValueError(f'{samples=} < 16') if background is None: background = 0.0 background = numpy.asarray(background) if mean is None: mean = 1.0 mean = numpy.asarray(mean) mean -= background if numpy.any(mean <= 0.0): raise ValueError('mean - background must not be less than zero') scale = samples / (2.0 * math.pi) if zero_phase is None: zero_phase = 8.0 / scale phase = zero_phase * scale # in sample units if zero_stdev is None: zero_stdev = 1.5 / scale stdev = zero_stdev * scale # in sample units if zero_phase < 0 or zero_phase > 2.0 * math.pi: raise ValueError(f'{zero_phase=} out of range [0 .. 2 pi]') if stdev < 1.5: raise ValueError( f'{zero_stdev=} < {1.5 / scale} cannot be sampled sufficiently' ) if stdev >= samples / 10: raise ValueError(f'{zero_stdev=} > pi / 5 not supported') frequencies = numpy.atleast_1d(frequency) if frequencies.size > 1 or frequencies[0] <= 0.0: raise ValueError('frequency must be scalar and positive') frequencies = numpy.linspace( frequency, samples // 2 * frequency, samples // 2 ) frequencies = frequencies[[h - 1 for h in harmonic]] real, imag = phasor_from_lifetime( frequencies, lifetime, fraction, preexponential=preexponential, unit_conversion=unit_conversion, ) real, imag = numpy.atleast_1d(real, imag) zero = numpy.zeros(samples, dtype=numpy.float64) _gaussian_signal(zero, phase, stdev) zero_mean, zero_real, zero_imag = phasor_from_signal( zero, harmonic=harmonic ) if real.ndim > 1: # make broadcastable with real and imag zero_real = zero_real[:, None] zero_imag = zero_imag[:, None] if not all_hamonics: zero = phasor_to_signal( zero_mean, zero_real, zero_imag, samples=samples, harmonic=harmonic ) phasor_multiply(real, imag, zero_real, zero_imag, out=(real, imag)) if len(harmonic) == 1: harmonic = harmonic[0] signal = phasor_to_signal( mean, real, imag, samples=samples, harmonic=harmonic ) signal += numpy.asarray(background) time = numpy.linspace(0, 1.0 / (unit_conversion * frequency), samples) return signal.squeeze(), zero.squeeze(), time
[docs] def phasor_semicircle( samples: int = 101, / ) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]: r"""Return equally spaced phasor coordinates on universal semicircle. Parameters ---------- samples : int, optional, default: 101 Number of coordinates to return. Returns ------- real : ndarray Real component of semicircle phasor coordinates. imag : ndarray Imaginary component of semicircle phasor coordinates. Raises ------ ValueError The number of `samples` is smaller than 1. Notes ----- If more than one sample, the first and last phasor coordinates returned are ``(0, 0)`` and ``(1, 0)``. The center coordinate, if any, is ``(0.5, 0.5)``. The universal semicircle is composed of the phasor coordinates of single lifetime components, where the relation of polar coordinates (phase :math:`\phi` and modulation :math:`M`) is: .. math:: M = \cos{\phi} Examples -------- Calculate three phasor coordinates on universal semicircle: >>> phasor_semicircle(3) # doctest: +NUMBER (array([0, 0.5, 1]), array([0.0, 0.5, 0])) """ if samples < 1: raise ValueError(f'{samples=} < 1') arange = numpy.linspace(math.pi, 0.0, samples) real = numpy.cos(arange) real += 1.0 real *= 0.5 imag = numpy.sin(arange) imag *= 0.5 return real, imag
[docs] def phasor_to_complex( real: ArrayLike, imag: ArrayLike, /, *, dtype: DTypeLike = None, ) -> NDArray[numpy.complex64 | numpy.complex128]: """Return phasor coordinates as complex numbers. Parameters ---------- real : array_like Real component of phasor coordinates. imag : array_like Imaginary component of phasor coordinates. dtype : dtype_like, optional Data type of output array. Either complex64 or complex128. By default, complex64 if `real` and `imag` are float32, else complex128. Returns ------- complex : ndarray Phasor coordinates as complex numbers. Examples -------- Convert phasor coordinates to complex number arrays: >>> phasor_to_complex([0.4, 0.5], [0.2, 0.3]) array([0.4+0.2j, 0.5+0.3j]) """ real = numpy.asarray(real) imag = numpy.asarray(imag) if dtype is None: if real.dtype == numpy.float32 and imag.dtype == numpy.float32: dtype = numpy.complex64 else: dtype = numpy.complex128 else: dtype = numpy.dtype(dtype) if dtype.kind != 'c': raise ValueError(f'{dtype=} not a complex type') c = numpy.empty(numpy.broadcast(real, imag).shape, dtype) c.real = real c.imag = imag return c
[docs] def phasor_multiply( real: ArrayLike, imag: ArrayLike, factor_real: ArrayLike, factor_imag: ArrayLike, /, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any]]: r"""Return complex multiplication of two phasors. Complex multiplication can be used, for example, to convolve two signals such as exponential decay and instrument response functions. Parameters ---------- real : array_like Real component of phasor coordinates to multiply. imag : array_like Imaginary component of phasor coordinates to multiply. factor_real : array_like Real component of phasor coordinates to multiply by. factor_imag : array_like Imaginary component of phasor coordinates to multiply by. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- real : ndarray Real component of complex multiplication. imag : ndarray Imaginary component of complex multiplication. Notes ----- The phasor coordinates `real` (:math:`G`) and `imag` (:math:`S`) are multiplied by phasor coordinates `factor_real` (:math:`g`) and `factor_imag` (:math:`s`) according to: .. math:: G' &= G \cdot g - S \cdot s S' &= G \cdot s + S \cdot g Examples -------- Multiply two sets of phasor coordinates: >>> phasor_multiply([0.1, 0.2], [0.3, 0.4], [0.5, 0.6], [0.7, 0.8]) (array([-0.16, -0.2]), array([0.22, 0.4])) """ # c = phasor_to_complex(real, imag) * phasor_to_complex( # factor_real, factor_imag # ) # return c.real, c.imag return _phasor_multiply( # type: ignore[no-any-return] real, imag, factor_real, factor_imag, **kwargs )
[docs] def phasor_divide( real: ArrayLike, imag: ArrayLike, divisor_real: ArrayLike, divisor_imag: ArrayLike, /, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any]]: r"""Return complex division of two phasors. Complex division can be used, for example, to deconvolve two signals such as exponential decay and instrument response functions. Parameters ---------- real : array_like Real component of phasor coordinates to divide. imag : array_like Imaginary component of phasor coordinates to divide. divisor_real : array_like Real component of phasor coordinates to divide by. divisor_imag : array_like Imaginary component of phasor coordinates to divide by. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- real : ndarray Real component of complex division. imag : ndarray Imaginary component of complex division. Notes ----- The phasor coordinates `real` (:math:`G`) and `imag` (:math:`S`) are divided by phasor coordinates `divisor_real` (:math:`g`) and `divisor_imag` (:math:`s`) according to: .. math:: d &= g \cdot g + s \cdot s G' &= (G \cdot g + S \cdot s) / d S' &= (G \cdot s - S \cdot g) / d Examples -------- Divide two sets of phasor coordinates: >>> phasor_divide([-0.16, -0.2], [0.22, 0.4], [0.5, 0.6], [0.7, 0.8]) (array([0.1, 0.2]), array([0.3, 0.4])) """ # c = phasor_to_complex(real, imag) / phasor_to_complex( # divisor_real, divisor_imag # ) # return c.real, c.imag return _phasor_divide( # type: ignore[no-any-return] real, imag, divisor_real, divisor_imag, **kwargs )
[docs] def phasor_normalize( mean_unnormalized: ArrayLike, real_unnormalized: ArrayLike, imag_unnormalized: ArrayLike, /, samples: int = 1, dtype: DTypeLike = None, ) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]: r"""Return normalized phasor coordinates. Use to normalize the phasor coordinates returned by ``phasor_from_signal(..., normalize=False)``. Parameters ---------- mean_unnormalized : array_like Unnormalized intensity of phasor coordinates. real_unnormalized : array_like Unnormalized real component of phasor coordinates. imag_unnormalized : array_like Unnormalized imaginary component of phasor coordinates. samples : int, default: 1 Number of signal samples over which `mean` was integrated. dtype : dtype_like, optional Data type of output arrays. Either float32 or float64. The default is float64 unless the `real` is float32. Returns ------- mean : ndarray Normalized intensity. real : ndarray Normalized real component. imag : ndarray Normalized imaginary component. Notes ----- The average intensity `mean` (:math:`F_{DC}`) and normalized phasor coordinates `real` (:math:`G`) and `imag` (:math:`S`) are calculated from the signal `intensity` (:math:`F`), the number of `samples` (:math:`K`), `real_unnormalized` (:math:`G'`), and `imag_unnormalized` (:math:`S'`) according to: .. math:: F_{DC} &= F / K G &= G' / F S &= S' / F If :math:`F = 0`, the normalized phasor coordinates (:math:`G`) and (:math:`S`) are undefined (:math:`NaN` or :math:`\infty`). Examples -------- Normalize phasor coordinates with intensity integrated over 10 samples: >>> phasor_normalize([0.0, 0.1], [0.0, 0.3], [0.4, 0.5], samples=10) (array([0, 0.01]), array([nan, 3]), array([inf, 5])) Normalize multi-harmonic phasor coordinates: >>> phasor_normalize(0.1, [0.0, 0.3], [0.4, 0.5], samples=10) (array(0.01), array([0, 3]), array([4, 5])) """ if samples < 1: raise ValueError(f'{samples=} < 1') if ( dtype is None and isinstance(real_unnormalized, numpy.ndarray) and real_unnormalized.dtype == numpy.float32 ): real = real_unnormalized.copy() else: real = numpy.array(real_unnormalized, dtype, copy=True) imag = numpy.array(imag_unnormalized, real.dtype, copy=True) mean = numpy.array( mean_unnormalized, real.dtype, copy=None if samples == 1 else True ) with numpy.errstate(divide='ignore', invalid='ignore'): numpy.divide(real, mean, out=real) numpy.divide(imag, mean, out=imag) if samples > 1: numpy.divide(mean, samples, out=mean) return mean, real, imag
[docs] def phasor_calibrate( real: ArrayLike, imag: ArrayLike, reference_mean: ArrayLike, reference_real: ArrayLike, reference_imag: ArrayLike, /, frequency: ArrayLike, lifetime: ArrayLike, *, harmonic: int | Sequence[int] | Literal['all'] | str | None = None, skip_axis: int | Sequence[int] | None = None, fraction: ArrayLike | None = None, preexponential: bool = False, unit_conversion: float = 1e-3, method: Literal['mean', 'median'] = 'mean', nan_safe: bool = True, reverse: bool = False, ) -> tuple[NDArray[Any], NDArray[Any]]: """Return calibrated/referenced phasor coordinates. Calibration of phasor coordinates from time-resolved measurements is necessary to account for the instrument response function (IRF) and delays in the electronics. Parameters ---------- real : array_like Real component of phasor coordinates to be calibrated. imag : array_like Imaginary component of phasor coordinates to be calibrated. reference_mean : array_like or None Intensity of phasor coordinates from reference of known lifetime. Used to re-normalize averaged phasor coordinates. reference_real : array_like Real component of phasor coordinates from reference of known lifetime. Must be measured with the same instrument setting as the phasor coordinates to be calibrated. Dimensions must be the same as `real`. reference_imag : array_like Imaginary component of phasor coordinates from reference of known lifetime. Must be measured with the same instrument setting as the phasor coordinates to be calibrated. frequency : array_like Fundamental laser pulse or modulation frequency in MHz. lifetime : array_like Lifetime components in ns. Must be scalar or one-dimensional. harmonic : int, sequence of int, or 'all', default: 1 Harmonics included in `real` and `imag`. If an integer, the harmonics at which `real` and `imag` were acquired or calculated. If a sequence, the harmonics included in the first axis of `real` and `imag`. If `'all'`, the first axis of `real` and `imag` contains lower harmonics. The default is the first harmonic (fundamental frequency). skip_axis : int or sequence of int, optional Axes in `reference_mean` to exclude from reference center calculation. By default, all axes except harmonics are included. fraction : array_like, optional Fractional intensities or pre-exponential amplitudes of the lifetime components. Fractions are normalized to sum to 1. Must be same size as `lifetime`. preexponential : bool, optional If true, `fraction` values are pre-exponential amplitudes, else fractional intensities (default). unit_conversion : float, optional Product of `frequency` and `lifetime` units' prefix factors. The default is 1e-3 for MHz and ns, or Hz and ms. Use 1.0 for Hz and s. method : str, optional Method used for calculating center of reference phasor coordinates: - ``'mean'``: Arithmetic mean. - ``'median'``: Spatial median. nan_safe : bool, optional Ensure `method` is applied to same elements of reference arrays. By default, distribute NaNs among reference arrays before applying `method`. reverse : bool, optional Reverse calibration. Returns ------- real : ndarray Calibrated real component of phasor coordinates. imag : ndarray Calibrated imaginary component of phasor coordinates. Raises ------ ValueError The array shapes of `real` and `imag`, or `reference_real` and `reference_imag` do not match. Number of harmonics does not match the first axis of `real` and `imag`. See Also -------- phasorpy.phasor.phasor_transform phasorpy.phasor.polar_from_reference_phasor phasorpy.phasor.phasor_center phasorpy.phasor.phasor_from_lifetime Notes ----- This function is a convenience wrapper for the following operations: .. code-block:: python phasor_transform( real, imag, *polar_from_reference_phasor( *phasor_center( reference_mean, reference_real, reference_imag, skip_axis, method, nan_safe, )[1:], *phasor_from_lifetime( frequency, lifetime, fraction, preexponential, unit_conversion, ), ), ) Calibration can be reversed such that .. code-block:: python real, imag == phasor_calibrate( *phasor_calibrate(real, imag, *args, **kwargs), *args, reverse=True, **kwargs ) Examples -------- >>> phasor_calibrate( ... [0.1, 0.2, 0.3], ... [0.4, 0.5, 0.6], ... [1.0, 1.0, 1.0], ... [0.2, 0.3, 0.4], ... [0.5, 0.6, 0.7], ... frequency=80, ... lifetime=4, ... ) # doctest: +NUMBER (array([0.0658, 0.132, 0.198]), array([0.2657, 0.332, 0.399])) Undo the previous calibration: >>> phasor_calibrate( ... [0.0658, 0.132, 0.198], ... [0.2657, 0.332, 0.399], ... [1.0, 1.0, 1.0], ... [0.2, 0.3, 0.4], ... [0.5, 0.6, 0.7], ... frequency=80, ... lifetime=4, ... reverse=True, ... ) # doctest: +NUMBER (array([0.1, 0.2, 0.3]), array([0.4, 0.5, 0.6])) """ real = numpy.asarray(real) imag = numpy.asarray(imag) reference_mean = numpy.asarray(reference_mean) reference_real = numpy.asarray(reference_real) reference_imag = numpy.asarray(reference_imag) if real.shape != imag.shape: raise ValueError(f'{real.shape=} != {imag.shape=}') if reference_real.shape != reference_imag.shape: raise ValueError(f'{reference_real.shape=} != {reference_imag.shape=}') has_harmonic_axis = reference_mean.ndim + 1 == reference_real.ndim harmonic, _ = parse_harmonic( harmonic, reference_real.shape[0] if has_harmonic_axis else None ) if has_harmonic_axis: if real.ndim == 0: raise ValueError(f'{real.shape=} != {len(harmonic)=}') if real.shape[0] != len(harmonic): raise ValueError(f'{real.shape[0]=} != {len(harmonic)=}') if reference_real.shape[0] != len(harmonic): raise ValueError(f'{reference_real.shape[0]=} != {len(harmonic)=}') if reference_mean.shape != reference_real.shape[1:]: raise ValueError( f'{reference_mean.shape=} != {reference_real.shape[1:]=}' ) elif reference_mean.shape != reference_real.shape: raise ValueError(f'{reference_mean.shape=} != {reference_real.shape=}') elif len(harmonic) > 1: raise ValueError( f'{reference_mean.shape=} does not have harmonic axis' ) frequency = numpy.asarray(frequency) frequency = frequency * harmonic _, measured_re, measured_im = phasor_center( reference_mean, reference_real, reference_imag, skip_axis=skip_axis, method=method, nan_safe=nan_safe, ) known_re, known_im = phasor_from_lifetime( frequency, lifetime, fraction, preexponential=preexponential, unit_conversion=unit_conversion, ) phi_zero, mod_zero = polar_from_reference_phasor( measured_re, measured_im, known_re, known_im ) if numpy.ndim(phi_zero) > 0: if reverse: numpy.negative(phi_zero, out=phi_zero) numpy.reciprocal(mod_zero, out=mod_zero) _, axis = _parse_skip_axis( skip_axis, real.ndim - int(has_harmonic_axis), has_harmonic_axis ) if axis is not None: phi_zero = numpy.expand_dims(phi_zero, axis=axis) mod_zero = numpy.expand_dims(mod_zero, axis=axis) elif reverse: phi_zero = -phi_zero mod_zero = 1.0 / mod_zero return phasor_transform(real, imag, phi_zero, mod_zero)
[docs] def phasor_transform( real: ArrayLike, imag: ArrayLike, phase: ArrayLike = 0.0, modulation: ArrayLike = 1.0, /, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any]]: r"""Return rotated and scaled phasor coordinates. This function rotates and uniformly scales phasor coordinates around the origin. It can be used, for example, to calibrate phasor coordinates. Parameters ---------- real : array_like Real component of phasor coordinates to transform. imag : array_like Imaginary component of phasor coordinates to transform. phase : array_like, optional, default: 0.0 Rotation angle in radians. modulation : array_like, optional, default: 1.0 Uniform scale factor. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- real : ndarray Real component of rotated and scaled phasor coordinates. imag : ndarray Imaginary component of rotated and scaled phasor coordinates. Notes ----- The phasor coordinates `real` (:math:`G`) and `imag` (:math:`S`) are rotated by `phase` (:math:`\phi`) and scaled by `modulation_zero` (:math:`M`) around the origin according to: .. math:: g &= M \cdot \cos{\phi} s &= M \cdot \sin{\phi} G' &= G \cdot g - S \cdot s S' &= G \cdot s + S \cdot g Examples -------- Use scalar reference coordinates to rotate and scale phasor coordinates: >>> phasor_transform( ... [0.1, 0.2, 0.3], [0.4, 0.5, 0.6], 0.1, 0.5 ... ) # doctest: +NUMBER (array([0.0298, 0.0745, 0.119]), array([0.204, 0.259, 0.3135])) Use separate reference coordinates for each phasor coordinate: >>> phasor_transform( ... [0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.2, 0.2, 0.3], [0.5, 0.2, 0.3] ... ) # doctest: +NUMBER (array([0.00927, 0.0193, 0.0328]), array([0.206, 0.106, 0.1986])) """ if numpy.ndim(phase) == 0 and numpy.ndim(modulation) == 0: return _phasor_transform_const( # type: ignore[no-any-return] real, imag, modulation * numpy.cos(phase), modulation * numpy.sin(phase), ) return _phasor_transform( # type: ignore[no-any-return] real, imag, phase, modulation, **kwargs )
[docs] def polar_from_reference_phasor( measured_real: ArrayLike, measured_imag: ArrayLike, known_real: ArrayLike, known_imag: ArrayLike, /, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any]]: r"""Return polar coordinates for calibration from reference phasor. Return rotation angle and scale factor for calibrating phasor coordinates from measured and known phasor coordinates of a reference, for example, a sample of known lifetime. Parameters ---------- measured_real : array_like Real component of measured phasor coordinates. measured_imag : array_like Imaginary component of measured phasor coordinates. known_real : array_like Real component of reference phasor coordinates. known_imag : array_like Imaginary component of reference phasor coordinates. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- phase_zero : ndarray Angular component of polar coordinates for calibration in radians. modulation_zero : ndarray Radial component of polar coordinates for calibration. See Also -------- phasorpy.phasor.polar_from_reference Notes ----- This function performs the following operations: .. code-block:: python polar_from_reference( *phasor_to_polar(measured_real, measured_imag), *phasor_to_polar(known_real, known_imag), ) Examples -------- >>> polar_from_reference_phasor(0.5, 0.0, 1.0, 0.0) (0.0, 2.0) """ return _polar_from_reference_phasor( # type: ignore[no-any-return] measured_real, measured_imag, known_real, known_imag, **kwargs )
[docs] def polar_from_reference( measured_phase: ArrayLike, measured_modulation: ArrayLike, known_phase: ArrayLike, known_modulation: ArrayLike, /, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any]]: r"""Return polar coordinates for calibration from reference coordinates. Return rotation angle and scale factor for calibrating phasor coordinates from measured and known polar coordinates of a reference, for example, a sample of known lifetime. Parameters ---------- measured_phase : array_like Angular component of measured polar coordinates in radians. measured_modulation : array_like Radial component of measured polar coordinates. known_phase : array_like Angular component of reference polar coordinates in radians. known_modulation : array_like Radial component of reference polar coordinates. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- phase_zero : ndarray Angular component of polar coordinates for calibration in radians. modulation_zero : ndarray Radial component of polar coordinates for calibration. See Also -------- phasorpy.phasor.polar_from_reference_phasor Examples -------- >>> polar_from_reference(0.2, 0.4, 0.4, 1.3) (0.2, 3.25) """ return _polar_from_reference( # type: ignore[no-any-return] measured_phase, measured_modulation, known_phase, known_modulation, **kwargs, )
[docs] def phasor_to_polar( real: ArrayLike, imag: ArrayLike, /, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any]]: r"""Return polar coordinates from phasor coordinates. Parameters ---------- real : array_like Real component of phasor coordinates. imag : array_like Imaginary component of phasor coordinates. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Notes ----- The phasor coordinates `real` (:math:`G`) and `imag` (:math:`S`) are converted to polar coordinates `phase` (:math:`\phi`) and `modulation` (:math:`M`) according to: .. math:: \phi &= \arctan(S / G) M &= \sqrt{G^2 + S^2} Returns ------- phase : ndarray Angular component of polar coordinates in radians. modulation : ndarray Radial component of polar coordinates. See Also -------- phasorpy.phasor.phasor_from_polar Examples -------- Calculate polar coordinates from three phasor coordinates: >>> phasor_to_polar([1.0, 0.5, 0.0], [0.0, 0.5, 1.0]) # doctest: +NUMBER (array([0, 0.7854, 1.571]), array([1, 0.7071, 1])) """ return _phasor_to_polar( # type: ignore[no-any-return] real, imag, **kwargs )
[docs] def phasor_from_polar( phase: ArrayLike, modulation: ArrayLike, /, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any]]: r"""Return phasor coordinates from polar coordinates. Parameters ---------- phase : array_like Angular component of polar coordinates in radians. modulation : array_like Radial component of polar coordinates. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- real : ndarray Real component of phasor coordinates. imag : ndarray Imaginary component of phasor coordinates. See Also -------- phasorpy.phasor.phasor_to_polar Notes ----- The polar coordinates `phase` (:math:`\phi`) and `modulation` (:math:`M`) are converted to phasor coordinates `real` (:math:`G`) and `imag` (:math:`S`) according to: .. math:: G &= M \cdot \cos{\phi} S &= M \cdot \sin{\phi} Examples -------- Calculate phasor coordinates from three polar coordinates: >>> phasor_from_polar( ... [0.0, math.pi / 4, math.pi / 2], [1.0, math.sqrt(0.5), 1.0] ... ) # doctest: +NUMBER (array([1, 0.5, 0.0]), array([0, 0.5, 1])) """ return _phasor_from_polar( # type: ignore[no-any-return] phase, modulation, **kwargs )
[docs] def phasor_to_apparent_lifetime( real: ArrayLike, imag: ArrayLike, /, frequency: ArrayLike, *, unit_conversion: float = 1e-3, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any]]: r"""Return apparent single lifetimes from phasor coordinates. Parameters ---------- real : array_like Real component of phasor coordinates. imag : array_like Imaginary component of phasor coordinates. frequency : array_like Laser pulse or modulation frequency in MHz. unit_conversion : float, optional Product of `frequency` and returned `lifetime` units' prefix factors. The default is 1e-3 for MHz and ns, or Hz and ms. Use 1.0 for Hz and s. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- phase_lifetime : ndarray Apparent single lifetime from angular component of phasor coordinates. modulation_lifetime : ndarray Apparent single lifetime from radial component of phasor coordinates. See Also -------- phasorpy.phasor.phasor_from_apparent_lifetime Notes ----- The phasor coordinates `real` (:math:`G`) and `imag` (:math:`S`) are converted to apparent single lifetimes `phase_lifetime` (:math:`\tau_{\phi}`) and `modulation_lifetime` (:math:`\tau_{M}`) at frequency :math:`f` according to: .. math:: \omega &= 2 \pi f \tau_{\phi} &= \omega^{-1} \cdot S / G \tau_{M} &= \omega^{-1} \cdot \sqrt{1 / (S^2 + G^2) - 1} Examples -------- The apparent single lifetimes from phase and modulation are equal only if the phasor coordinates lie on the universal semicircle: >>> phasor_to_apparent_lifetime( ... 0.5, [0.5, 0.45], frequency=80 ... ) # doctest: +NUMBER (array([1.989, 1.79]), array([1.989, 2.188])) Apparent single lifetimes of phasor coordinates outside the universal semicircle are undefined: >>> phasor_to_apparent_lifetime(-0.1, 1.1, 80) # doctest: +NUMBER (-21.8, 0.0) Apparent single lifetimes at the universal semicircle endpoints are infinite and zero: >>> phasor_to_apparent_lifetime([0, 1], [0, 0], 80) # doctest: +NUMBER (array([inf, 0]), array([inf, 0])) """ omega = numpy.array(frequency, dtype=numpy.float64) # makes copy omega *= math.pi * 2.0 * unit_conversion return _phasor_to_apparent_lifetime( # type: ignore[no-any-return] real, imag, omega, **kwargs )
[docs] def phasor_from_apparent_lifetime( phase_lifetime: ArrayLike, modulation_lifetime: ArrayLike | None, /, frequency: ArrayLike, *, unit_conversion: float = 1e-3, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any]]: r"""Return phasor coordinates from apparent single lifetimes. Parameters ---------- phase_lifetime : ndarray Apparent single lifetime from phase. modulation_lifetime : ndarray, optional Apparent single lifetime from modulation. If None, `modulation_lifetime` is same as `phase_lifetime`. frequency : array_like Laser pulse or modulation frequency in MHz. unit_conversion : float, optional Product of `frequency` and `lifetime` units' prefix factors. The default is 1e-3 for MHz and ns, or Hz and ms. Use 1.0 for Hz and s. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- real : ndarray Real component of phasor coordinates. imag : ndarray Imaginary component of phasor coordinates. See Also -------- phasorpy.phasor.phasor_to_apparent_lifetime Notes ----- The apparent single lifetimes `phase_lifetime` (:math:`\tau_{\phi}`) and `modulation_lifetime` (:math:`\tau_{M}`) are converted to phasor coordinates `real` (:math:`G`) and `imag` (:math:`S`) at frequency :math:`f` according to: .. math:: \omega &= 2 \pi f \phi & = \arctan(\omega \tau_{\phi}) M &= 1 / \sqrt{1 + (\omega \tau_{M})^2} G &= M \cdot \cos{\phi} S &= M \cdot \sin{\phi} Examples -------- If the apparent single lifetimes from phase and modulation are equal, the phasor coordinates lie on the universal semicircle, else inside: >>> phasor_from_apparent_lifetime( ... 1.9894, [1.9894, 2.4113], frequency=80.0 ... ) # doctest: +NUMBER (array([0.5, 0.45]), array([0.5, 0.45])) Zero and infinite apparent single lifetimes define the endpoints of the universal semicircle: >>> phasor_from_apparent_lifetime( ... [0.0, 1e9], [0.0, 1e9], frequency=80 ... ) # doctest: +NUMBER (array([1, 0.0]), array([0, 0.0])) """ omega = numpy.array(frequency, dtype=numpy.float64) # makes copy omega *= math.pi * 2.0 * unit_conversion if modulation_lifetime is None: return _phasor_from_single_lifetime( # type: ignore[no-any-return] phase_lifetime, omega, **kwargs ) return _phasor_from_apparent_lifetime( # type: ignore[no-any-return] phase_lifetime, modulation_lifetime, omega, **kwargs )
[docs] def lifetime_to_frequency( lifetime: ArrayLike, *, unit_conversion: float = 1e-3, ) -> NDArray[numpy.float64]: r"""Return optimal frequency for resolving single component lifetime. Parameters ---------- lifetime : array_like Single component lifetime. unit_conversion : float, optional, default: 1e-3 Product of `frequency` and `lifetime` units' prefix factors. The default is 1e-3 for MHz and ns, or Hz and ms. Use 1.0 for Hz and s. Returns ------- frequency : ndarray Optimal laser pulse or modulation frequency for resolving `lifetime`. Notes ----- The optimal frequency :math:`f` to resolve a single component lifetime :math:`\tau` is (:ref:`Redford & Clegg 2005 <redford-clegg-2005>`. Eq. B.6): .. math:: \omega &= 2 \pi f \omega^2 &= \frac{1 + \sqrt{3}}{2 \tau^2} Examples -------- Measurements of a lifetime near 4 ns should be made at 47 MHz, near 1 ns at 186 MHz: >>> lifetime_to_frequency([4.0, 1.0]) # doctest: +NUMBER array([46.5, 186]) """ t = numpy.reciprocal(lifetime, dtype=numpy.float64) t *= 0.18601566519848653 / unit_conversion return t
[docs] def lifetime_from_frequency( frequency: ArrayLike, *, unit_conversion: float = 1e-3, ) -> NDArray[numpy.float64]: r"""Return single component lifetime best resolved at frequency. Parameters ---------- frequency : array_like Laser pulse or modulation frequency. unit_conversion : float, optional, default: 1e-3 Product of `frequency` and `lifetime` units' prefix factors. The default is 1e-3 for MHz and ns, or Hz and ms. Use 1.0 for Hz and s. Returns ------- lifetime : ndarray Single component lifetime best resolved at `frequency`. Notes ----- The lifetime :math:`\tau` that is best resolved at frequency :math:`f` is (:ref:`Redford & Clegg 2005 <redford-clegg-2005>`. Eq. B.6): .. math:: \omega &= 2 \pi f \tau^2 &= \frac{1 + \sqrt{3}}{2 \omega^2} Examples -------- Measurements at frequencies of 47 and 186 MHz are best for measuring lifetimes near 4 and 1 ns respectively: >>> lifetime_from_frequency([46.5, 186]) # doctest: +NUMBER array([4, 1]) """ t = numpy.reciprocal(frequency, dtype=numpy.float64) t *= 0.18601566519848653 / unit_conversion return t
[docs] def lifetime_fraction_to_amplitude( lifetime: ArrayLike, fraction: ArrayLike, *, axis: int = -1 ) -> NDArray[numpy.float64]: r"""Return pre-exponential amplitude from fractional intensity. Parameters ---------- lifetime : array_like Lifetime components. fraction : array_like Fractional intensities of lifetime components. Fractions are normalized to sum to 1. axis : int, optional Axis over which to compute pre-exponential amplitudes. The default is the last axis (-1). Returns ------- amplitude : ndarray Pre-exponential amplitudes. The product of `amplitude` and `lifetime` sums to 1 along `axis`. See Also -------- phasorpy.phasor.lifetime_fraction_from_amplitude Notes ----- The pre-exponential amplitude :math:`a` of component :math:`j` with lifetime :math:`\tau` and fractional intensity :math:`\alpha` is: .. math:: a_{j} = \frac{\alpha_{j}}{\tau_{j} \cdot \sum_{j} \alpha_{j}} Examples -------- >>> lifetime_fraction_to_amplitude( ... [4.0, 1.0], [1.6, 0.4] ... ) # doctest: +NUMBER array([0.2, 0.2]) """ t = numpy.array(fraction, dtype=numpy.float64) # makes copy t /= numpy.sum(t, axis=axis, keepdims=True) numpy.true_divide(t, lifetime, out=t) return t
[docs] def lifetime_fraction_from_amplitude( lifetime: ArrayLike, amplitude: ArrayLike, *, axis: int = -1 ) -> NDArray[numpy.float64]: r"""Return fractional intensity from pre-exponential amplitude. Parameters ---------- lifetime : array_like Lifetime of components. amplitude : array_like Pre-exponential amplitudes of lifetime components. axis : int, optional Axis over which to compute fractional intensities. The default is the last axis (-1). Returns ------- fraction : ndarray Fractional intensities, normalized to sum to 1 along `axis`. See Also -------- phasorpy.phasor.lifetime_fraction_to_amplitude Notes ----- The fractional intensity :math:`\alpha` of component :math:`j` with lifetime :math:`\tau` and pre-exponential amplitude :math:`a` is: .. math:: \alpha_{j} = \frac{a_{j} \tau_{j}}{\sum_{j} a_{j} \tau_{j}} Examples -------- >>> lifetime_fraction_from_amplitude( ... [4.0, 1.0], [1.0, 1.0] ... ) # doctest: +NUMBER array([0.8, 0.2]) """ t = numpy.multiply(amplitude, lifetime, dtype=numpy.float64) t /= numpy.sum(t, axis=axis, keepdims=True) return t
[docs] def phasor_at_harmonic( real: ArrayLike, harmonic: ArrayLike, other_harmonic: ArrayLike, /, **kwargs: Any, ) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]: r"""Return phasor coordinates on universal semicircle at other harmonics. Return phasor coordinates at any harmonic, given the real component of phasor coordinates of a single exponential lifetime at a certain harmonic. The input and output phasor coordinates lie on the universal semicircle. Parameters ---------- real : array_like Real component of phasor coordinates of single exponential lifetime at `harmonic`. harmonic : array_like Harmonic of `real` coordinate. Must be integer >= 1. other_harmonic : array_like Harmonic for which to return phasor coordinates. Must be integer >= 1. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- real_other : ndarray Real component of phasor coordinates at `other_harmonic`. imag_other : ndarray Imaginary component of phasor coordinates at `other_harmonic`. Notes ----- The phasor coordinates :math:`g_{n}` (`real_other`) and :math:`s_{n}` (`imag_other`) of a single exponential lifetime at harmonic :math:`n` (`other_harmonic`) is calculated from the real part of the phasor coordinates :math:`g_{m}` (`real`) at harmonic :math:`m` (`harmonic`) according to (:ref:`Torrado, Malacrida, & Ranjit. 2022 <torrado-2022>`. Eq. 25): .. math:: g_{n} &= \frac{m^2 \cdot g_{m}}{n^2 + (m^2-n^2) \cdot g_{m}} s_{n} &= \sqrt{G_{n} - g_{n}^2} This function is equivalent to the following operations: .. code-block:: python phasor_from_lifetime( frequency=other_harmonic, lifetime=phasor_to_apparent_lifetime( real, sqrt(real - real * real), frequency=harmonic )[0], ) Examples -------- The phasor coordinates at higher harmonics are approaching the origin: >>> phasor_at_harmonic(0.5, 1, [1, 2, 4, 8]) # doctest: +NUMBER (array([0.5, 0.2, 0.05882, 0.01538]), array([0.5, 0.4, 0.2353, 0.1231])) """ harmonic = numpy.asarray(harmonic, dtype=numpy.int32) if numpy.any(harmonic < 1): raise ValueError('invalid harmonic') other_harmonic = numpy.asarray(other_harmonic, dtype=numpy.int32) if numpy.any(other_harmonic < 1): raise ValueError('invalid other_harmonic') return _phasor_at_harmonic( # type: ignore[no-any-return] real, harmonic, other_harmonic, **kwargs )
[docs] def phasor_from_lifetime( frequency: ArrayLike, lifetime: ArrayLike, fraction: ArrayLike | None = None, *, preexponential: bool = False, unit_conversion: float = 1e-3, keepdims: bool = False, ) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64]]: r"""Return phasor coordinates from lifetime components. Calculate phasor coordinates as a function of frequency, single or multiple lifetime components, and the pre-exponential amplitudes or fractional intensities of the components. Parameters ---------- frequency : array_like Laser pulse or modulation frequency in MHz. A scalar or one-dimensional sequence. lifetime : array_like Lifetime components in ns. See notes below for allowed dimensions. fraction : array_like, optional Fractional intensities or pre-exponential amplitudes of the lifetime components. Fractions are normalized to sum to 1. See notes below for allowed dimensions. preexponential : bool, optional, default: False If true, `fraction` values are pre-exponential amplitudes, else fractional intensities. unit_conversion : float, optional, default: 1e-3 Product of `frequency` and `lifetime` units' prefix factors. The default is 1e-3 for MHz and ns, or Hz and ms. Use 1.0 for Hz and s. keepdims : bool, optional, default: False If true, length-one dimensions are left in phasor coordinates. Returns ------- real : ndarray Real component of phasor coordinates. imag : ndarray Imaginary component of phasor coordinates. See notes below for dimensions of the returned arrays. Raises ------ ValueError Input arrays exceed their allowed dimensionality or do not match. Notes ----- The phasor coordinates :math:`G` (`real`) and :math:`S` (`imag`) for many lifetime components :math:`j` with lifetimes :math:`\tau` and pre-exponential amplitudes :math:`\alpha` at frequency :math:`f` are: .. math:: \omega &= 2 \pi f g_{j} &= \alpha_{j} / (1 + (\omega \tau_{j})^2) G &= \sum_{j} g_{j} S &= \sum_{j} \omega \tau_{j} g_{j} The relation between pre-exponential amplitudes :math:`a` and fractional intensities :math:`\alpha` is: .. math:: F_{DC} &= \sum_{j} a_{j} \tau_{j} \alpha_{j} &= a_{j} \tau_{j} / F_{DC} The following combinations of `lifetime` and `fraction` parameters are supported: - `lifetime` is scalar or one-dimensional, holding single component lifetimes. `fraction` is None. Return arrays of shape `(frequency.size, lifetime.size)`. - `lifetime` is two-dimensional, `fraction` is one-dimensional. The last dimensions match in size, holding lifetime components and their fractions. Return arrays of shape `(frequency.size, lifetime.shape[1])`. - `lifetime` is one-dimensional, `fraction` is two-dimensional. The last dimensions must match in size, holding lifetime components and their fractions. Return arrays of shape `(frequency.size, fraction.shape[1])`. - `lifetime` and `fraction` are up to two-dimensional of same shape. The last dimensions hold lifetime components and their fractions. Return arrays of shape `(frequency.size, lifetime.shape[0])`. Length-one dimensions are removed from returned arrays if `keepdims` is false (default). Examples -------- Phasor coordinates of a single lifetime component (in ns) at a frequency of 80 MHz: >>> phasor_from_lifetime(80.0, 1.9894368) # doctest: +NUMBER (0.5, 0.5) Phasor coordinates of two lifetime components with equal fractional intensities: >>> phasor_from_lifetime( ... 80.0, [3.9788735, 0.9947183], [0.5, 0.5] ... ) # doctest: +NUMBER (0.5, 0.4) Phasor coordinates of two lifetime components with equal pre-exponential amplitudes: >>> phasor_from_lifetime( ... 80.0, [3.9788735, 0.9947183], [0.5, 0.5], preexponential=True ... ) # doctest: +NUMBER (0.32, 0.4) Phasor coordinates of many single-component lifetimes (fractions omitted): >>> phasor_from_lifetime( ... 80.0, [3.9788735, 1.9894368, 0.9947183] ... ) # doctest: +NUMBER (array([0.2, 0.5, 0.8]), array([0.4, 0.5, 0.4])) Phasor coordinates of two lifetime components with varying fractions: >>> phasor_from_lifetime( ... 80.0, [3.9788735, 0.9947183], [[1, 0], [0.5, 0.5], [0, 1]] ... ) # doctest: +NUMBER (array([0.2, 0.5, 0.8]), array([0.4, 0.4, 0.4])) Phasor coordinates of multiple two-component lifetimes with constant fractions, keeping dimensions: >>> phasor_from_lifetime( ... 80.0, [[3.9788735, 0.9947183], [1.9894368, 1.9894368]], [0.5, 0.5] ... ) # doctest: +NUMBER (array([0.5, 0.5]), array([0.4, 0.5])) Phasor coordinates of multiple two-component lifetimes with specific fractions at multiple frequencies. Frequencies are in Hz, lifetimes in ns: >>> phasor_from_lifetime( ... [40e6, 80e6], ... [[1e-9, 0.9947183e-9], [3.9788735e-9, 0.9947183e-9]], ... [[0, 1], [0.5, 0.5]], ... unit_conversion=1.0, ... ) # doctest: +NUMBER (array([[0.941, 0.721], [0.8, 0.5]]), array([[0.235, 0.368], [0.4, 0.4]])) """ if unit_conversion < 1e-16: raise ValueError(f'{unit_conversion=} < 1e-16') frequency = numpy.atleast_1d(numpy.asarray(frequency, dtype=numpy.float64)) if frequency.ndim != 1: raise ValueError('frequency is not one-dimensional array') lifetime = numpy.atleast_1d(numpy.asarray(lifetime, dtype=numpy.float64)) if lifetime.ndim > 2: raise ValueError('lifetime must be one- or two-dimensional array') if fraction is None: # single-component lifetimes if lifetime.ndim > 1: raise ValueError( 'lifetime must be one-dimensional array if fraction is None' ) lifetime = lifetime.reshape(-1, 1) # move components to last axis fraction = numpy.ones_like(lifetime) # not really used else: fraction = numpy.atleast_1d( numpy.asarray(fraction, dtype=numpy.float64) ) if fraction.ndim > 2: raise ValueError('fraction must be one- or two-dimensional array') if lifetime.ndim == 1 and fraction.ndim == 1: # one multi-component lifetime if lifetime.shape != fraction.shape: raise ValueError( f'{lifetime.shape=} does not match {fraction.shape=}' ) lifetime = lifetime.reshape(1, -1) fraction = fraction.reshape(1, -1) nvar = 1 elif lifetime.ndim == 2 and fraction.ndim == 2: # multiple, multi-component lifetimes if lifetime.shape[1] != fraction.shape[1]: raise ValueError(f'{lifetime.shape[1]=} != {fraction.shape[1]=}') nvar = lifetime.shape[0] elif lifetime.ndim == 2 and fraction.ndim == 1: # variable components, same fractions fraction = fraction.reshape(1, -1) nvar = lifetime.shape[0] elif lifetime.ndim == 1 and fraction.ndim == 2: # same components, varying fractions lifetime = lifetime.reshape(1, -1) nvar = fraction.shape[0] else: # unreachable code raise RuntimeError(f'{lifetime.shape=}, {fraction.shape=}') phasor = numpy.empty((2, frequency.size, nvar), dtype=numpy.float64) _phasor_from_lifetime( phasor, frequency, lifetime, fraction, unit_conversion, preexponential ) if not keepdims: phasor = phasor.squeeze() return phasor[0], phasor[1]
[docs] def polar_to_apparent_lifetime( phase: ArrayLike, modulation: ArrayLike, /, frequency: ArrayLike, *, unit_conversion: float = 1e-3, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any]]: r"""Return apparent single lifetimes from polar coordinates. Parameters ---------- phase : array_like Angular component of polar coordinates. imag : array_like Radial component of polar coordinates. frequency : array_like Laser pulse or modulation frequency in MHz. unit_conversion : float, optional Product of `frequency` and returned `lifetime` units' prefix factors. The default is 1e-3 for MHz and ns, or Hz and ms. Use 1.0 for Hz and s. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- phase_lifetime : ndarray Apparent single lifetime from `phase`. modulation_lifetime : ndarray Apparent single lifetime from `modulation`. See Also -------- phasorpy.phasor.polar_from_apparent_lifetime Notes ----- The polar coordinates `phase` (:math:`\phi`) and `modulation` (:math:`M`) are converted to apparent single lifetimes `phase_lifetime` (:math:`\tau_{\phi}`) and `modulation_lifetime` (:math:`\tau_{M}`) at frequency :math:`f` according to: .. math:: \omega &= 2 \pi f \tau_{\phi} &= \omega^{-1} \cdot \tan{\phi} \tau_{M} &= \omega^{-1} \cdot \sqrt{1 / M^2 - 1} Examples -------- The apparent single lifetimes from phase and modulation are equal only if the polar coordinates lie on the universal semicircle: >>> polar_to_apparent_lifetime( ... math.pi / 4, numpy.hypot([0.5, 0.45], [0.5, 0.45]), frequency=80 ... ) # doctest: +NUMBER (array([1.989, 1.989]), array([1.989, 2.411])) """ omega = numpy.array(frequency, dtype=numpy.float64) # makes copy omega *= math.pi * 2.0 * unit_conversion return _polar_to_apparent_lifetime( # type: ignore[no-any-return] phase, modulation, omega, **kwargs )
[docs] def polar_from_apparent_lifetime( phase_lifetime: ArrayLike, modulation_lifetime: ArrayLike | None, /, frequency: ArrayLike, *, unit_conversion: float = 1e-3, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any]]: r"""Return polar coordinates from apparent single lifetimes. Parameters ---------- phase_lifetime : ndarray Apparent single lifetime from phase. modulation_lifetime : ndarray, optional Apparent single lifetime from modulation. If None, `modulation_lifetime` is same as `phase_lifetime`. frequency : array_like Laser pulse or modulation frequency in MHz. unit_conversion : float, optional Product of `frequency` and `lifetime` units' prefix factors. The default is 1e-3 for MHz and ns, or Hz and ms. Use 1.0 for Hz and s. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- phase : ndarray Angular component of polar coordinates. modulation : ndarray Radial component of polar coordinates. See Also -------- phasorpy.phasor.polar_to_apparent_lifetime Notes ----- The apparent single lifetimes `phase_lifetime` (:math:`\tau_{\phi}`) and `modulation_lifetime` (:math:`\tau_{M}`) are converted to polar coordinates `phase` (:math:`\phi`) and `modulation` (:math:`M`) at frequency :math:`f` according to: .. math:: \omega &= 2 \pi f \phi & = \arctan(\omega \tau_{\phi}) M &= 1 / \sqrt{1 + (\omega \tau_{M})^2} Examples -------- If the apparent single lifetimes from phase and modulation are equal, the polar coordinates lie on the universal semicircle, else inside: >>> polar_from_apparent_lifetime( ... 1.9894, [1.9894, 2.4113], frequency=80.0 ... ) # doctest: +NUMBER (array([0.7854, 0.7854]), array([0.7071, 0.6364])) """ omega = numpy.array(frequency, dtype=numpy.float64) # makes copy omega *= math.pi * 2.0 * unit_conversion if modulation_lifetime is None: return _polar_from_single_lifetime( # type: ignore[no-any-return] phase_lifetime, omega, **kwargs ) return _polar_from_apparent_lifetime( # type: ignore[no-any-return] phase_lifetime, modulation_lifetime, omega, **kwargs )
[docs] def phasor_from_fret_donor( frequency: ArrayLike, donor_lifetime: ArrayLike, *, fret_efficiency: ArrayLike = 0.0, donor_freting: ArrayLike = 1.0, donor_background: ArrayLike = 0.0, background_real: ArrayLike = 0.0, background_imag: ArrayLike = 0.0, unit_conversion: float = 1e-3, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any]]: """Return phasor coordinates of FRET donor channel. Calculate phasor coordinates of a FRET (Förster Resonance Energy Transfer) donor channel as a function of frequency, donor lifetime, FRET efficiency, fraction of donors undergoing FRET, and background fluorescence. The phasor coordinates of the donor channel contain fractions of: - donor not undergoing energy transfer - donor quenched by energy transfer - background fluorescence Parameters ---------- frequency : array_like Laser pulse or modulation frequency in MHz. donor_lifetime : array_like Lifetime of donor without FRET in ns. fret_efficiency : array_like, optional, default 0 FRET efficiency in range [0..1]. donor_freting : array_like, optional, default 1 Fraction of donors participating in FRET. Range [0..1]. donor_background : array_like, optional, default 0 Weight of background fluorescence in donor channel relative to fluorescence of donor without FRET. A weight of 1 means the fluorescence of background and donor without FRET are equal. background_real : array_like, optional, default 0 Real component of background fluorescence phasor coordinate at `frequency`. background_imag : array_like, optional, default 0 Imaginary component of background fluorescence phasor coordinate at `frequency`. unit_conversion : float, optional Product of `frequency` and `lifetime` units' prefix factors. The default is 1e-3 for MHz and ns, or Hz and ms. Use 1.0 for Hz and s. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- real : ndarray Real component of donor channel phasor coordinates. imag : ndarray Imaginary component of donor channel phasor coordinates. See Also -------- phasorpy.phasor.phasor_from_fret_acceptor :ref:`sphx_glr_tutorials_api_phasorpy_fret.py` Examples -------- Compute the phasor coordinates of a FRET donor channel at three FRET efficiencies: >>> phasor_from_fret_donor( ... frequency=80, ... donor_lifetime=4.2, ... fret_efficiency=[0.0, 0.3, 1.0], ... donor_freting=0.9, ... donor_background=0.1, ... background_real=0.11, ... background_imag=0.12, ... ) # doctest: +NUMBER (array([0.1766, 0.2737, 0.1466]), array([0.3626, 0.4134, 0.2534])) """ omega = numpy.array(frequency, dtype=numpy.float64) # makes copy omega *= math.pi * 2.0 * unit_conversion return _phasor_from_fret_donor( # type: ignore[no-any-return] omega, donor_lifetime, fret_efficiency, donor_freting, donor_background, background_real, background_imag, **kwargs, )
[docs] def phasor_from_fret_acceptor( frequency: ArrayLike, donor_lifetime: ArrayLike, acceptor_lifetime: ArrayLike, *, fret_efficiency: ArrayLike = 0.0, donor_freting: ArrayLike = 1.0, donor_bleedthrough: ArrayLike = 0.0, acceptor_bleedthrough: ArrayLike = 0.0, acceptor_background: ArrayLike = 0.0, background_real: ArrayLike = 0.0, background_imag: ArrayLike = 0.0, unit_conversion: float = 1e-3, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any]]: """Return phasor coordinates of FRET acceptor channel. Calculate phasor coordinates of a FRET (Förster Resonance Energy Transfer) acceptor channel as a function of frequency, donor and acceptor lifetimes, FRET efficiency, fraction of donors undergoing FRET, fraction of directly excited acceptors, fraction of donor fluorescence in acceptor channel, and background fluorescence. The phasor coordinates of the acceptor channel contain fractions of: - acceptor sensitized by energy transfer - directly excited acceptor - donor bleedthrough - background fluorescence Parameters ---------- frequency : array_like Laser pulse or modulation frequency in MHz. donor_lifetime : array_like Lifetime of donor without FRET in ns. acceptor_lifetime : array_like Lifetime of acceptor in ns. fret_efficiency : array_like, optional, default 0 FRET efficiency in range [0..1]. donor_freting : array_like, optional, default 1 Fraction of donors participating in FRET. Range [0..1]. donor_bleedthrough : array_like, optional, default 0 Weight of donor fluorescence in acceptor channel relative to fluorescence of fully sensitized acceptor. A weight of 1 means the fluorescence from donor and fully sensitized acceptor are equal. The background in the donor channel does not bleed through. acceptor_bleedthrough : array_like, optional, default 0 Weight of fluorescence from directly excited acceptor relative to fluorescence of fully sensitized acceptor. A weight of 1 means the fluorescence from directly excited acceptor and fully sensitized acceptor are equal. acceptor_background : array_like, optional, default 0 Weight of background fluorescence in acceptor channel relative to fluorescence of fully sensitized acceptor. A weight of 1 means the fluorescence of background and fully sensitized acceptor are equal. background_real : array_like, optional, default 0 Real component of background fluorescence phasor coordinate at `frequency`. background_imag : array_like, optional, default 0 Imaginary component of background fluorescence phasor coordinate at `frequency`. unit_conversion : float, optional Product of `frequency` and `lifetime` units' prefix factors. The default is 1e-3 for MHz and ns, or Hz and ms. Use 1.0 for Hz and s. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- real : ndarray Real component of acceptor channel phasor coordinates. imag : ndarray Imaginary component of acceptor channel phasor coordinates. See Also -------- phasorpy.phasor.phasor_from_fret_donor :ref:`sphx_glr_tutorials_api_phasorpy_fret.py` Examples -------- Compute the phasor coordinates of a FRET acceptor channel at three FRET efficiencies: >>> phasor_from_fret_acceptor( ... frequency=80, ... donor_lifetime=4.2, ... acceptor_lifetime=3.0, ... fret_efficiency=[0.0, 0.3, 1.0], ... donor_freting=0.9, ... donor_bleedthrough=0.1, ... acceptor_bleedthrough=0.1, ... acceptor_background=0.1, ... background_real=0.11, ... background_imag=0.12, ... ) # doctest: +NUMBER (array([0.1996, 0.05772, 0.2867]), array([0.3225, 0.3103, 0.4292])) """ omega = numpy.array(frequency, dtype=numpy.float64) # makes copy omega *= math.pi * 2.0 * unit_conversion return _phasor_from_fret_acceptor( # type: ignore[no-any-return] omega, donor_lifetime, acceptor_lifetime, fret_efficiency, donor_freting, donor_bleedthrough, acceptor_bleedthrough, acceptor_background, background_real, background_imag, **kwargs, )
[docs] def phasor_to_principal_plane( real: ArrayLike, imag: ArrayLike, /, *, reorient: bool = True, ) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]: """Return multi-harmonic phasor coordinates projected onto principal plane. Principal Component Analysis (PCA) is used to project multi-harmonic phasor coordinates onto a plane, along which coordinate axes the phasor coordinates have the largest variations. The transformed coordinates are not phasor coordinates. However, the coordinates can be used in visualization and cursor analysis since the transformation is affine (preserving collinearity and ratios of distances). Parameters ---------- real : array_like Real component of multi-harmonic phasor coordinates. The first axis is the frequency dimension. If less than 2-dimensional, size-1 dimensions are prepended. imag : array_like Imaginary component of multi-harmonic phasor coordinates. Must be of same shape as `real`. reorient : bool, optional, default: True Reorient coordinates for easier visualization. The projected coordinates are rotated and scaled, such that the center lies in same quadrant and the projection of [1, 0] lies at [1, 0]. Returns ------- x : ndarray X-coordinates of projected phasor coordinates. If not `reorient`, this is the coordinate on the first principal axis. The shape is ``real.shape[1:]``. y : ndarray Y-coordinates of projected phasor coordinates. If not `reorient`, this is the coordinate on the second principal axis. transformation_matrix : ndarray Affine transformation matrix used to project phasor coordinates. The shape is ``(2, 2 * real.shape[0])``. See Also -------- :ref:`sphx_glr_tutorials_api_phasorpy_pca.py` Notes ----- This implementation does not work with coordinates containing undefined `NaN` values. The transformation matrix can be used to project multi-harmonic phasor coordinates, where the first axis is the frequency: .. code-block:: python x, y = numpy.dot( numpy.vstack( real.reshape(real.shape[0], -1), imag.reshape(imag.shape[0], -1), ), transformation_matrix, ).reshape(2, *real.shape[1:]) An application of PCA to full-harmonic phasor coordinates from MRI signals can be found in [1]_. References ---------- .. [1] Franssen WMJ, Vergeldt FJ, Bader AN, van Amerongen H, & Terenzi C. `Full-harmonics phasor analysis: unravelling multiexponential trends in magnetic resonance imaging data <https://doi.org/10.1021/acs.jpclett.0c02319>`_. *J Phys Chem Lett*, 11(21): 9152-9158 (2020) Examples -------- The phasor coordinates of multi-exponential decays may be almost indistinguishable at certain frequencies but are separated in the projection on the principal plane: >>> real = [[0.495, 0.502], [0.354, 0.304]] >>> imag = [[0.333, 0.334], [0.301, 0.349]] >>> x, y, transformation_matrix = phasor_to_principal_plane(real, imag) >>> x, y # doctest: +SKIP (array([0.294, 0.262]), array([0.192, 0.242])) >>> transformation_matrix # doctest: +SKIP array([[0.67, 0.33, -0.09, -0.41], [0.52, -0.52, -0.04, 0.44]]) """ re, im = numpy.atleast_2d(real, imag) if re.shape != im.shape: raise ValueError(f'real={re.shape} != imag={im.shape}') # reshape to variables in row, observations in column frequencies = re.shape[0] shape = re.shape[1:] re = re.reshape(re.shape[0], -1) im = im.reshape(im.shape[0], -1) # vector of multi-frequency phasor coordinates coordinates = numpy.vstack((re, im)) # vector of centered coordinates center = numpy.nanmean(coordinates, axis=1, keepdims=True) coordinates -= center # covariance matrix (scatter matrix would also work) cov = numpy.cov(coordinates, rowvar=True) # calculate eigenvectors _, eigvec = numpy.linalg.eigh(cov) # projection matrix: two eigenvectors with largest eigenvalues transformation_matrix = eigvec.T[-2:][::-1] if reorient: # for single harmonic, this should restore original coordinates. # 1. rotate and scale such that projection of [1, 0] lies at [1, 0] x, y = numpy.dot( transformation_matrix, numpy.vstack(([[1.0]] * frequencies, [[0.0]] * frequencies)), ) x = x.item() y = y.item() angle = -math.atan2(y, x) if angle < 0: angle += 2.0 * math.pi cos = math.cos(angle) sin = math.sin(angle) transformation_matrix = numpy.dot( [[cos, -sin], [sin, cos]], transformation_matrix ) scale_factor = 1.0 / math.hypot(x, y) transformation_matrix = numpy.dot( [[scale_factor, 0], [0, scale_factor]], transformation_matrix ) # 2. mirror such that projected center lies in same quadrant cs = math.copysign x, y = numpy.dot(transformation_matrix, center) x = x.item() y = y.item() transformation_matrix = numpy.dot( [ [-1 if cs(1, x) != cs(1, center[0][0]) else 1, 0], [0, -1 if cs(1, y) != cs(1, center[1][0]) else 1], ], transformation_matrix, ) # project multi-frequency phasor coordinates onto principal plane coordinates += center coordinates = numpy.dot(transformation_matrix, coordinates) return ( coordinates[0].reshape(shape), # x coordinates coordinates[1].reshape(shape), # y coordinates transformation_matrix, )
[docs] def phasor_filter_median( mean: ArrayLike, real: ArrayLike, imag: ArrayLike, /, *, repeat: int = 1, size: int = 3, skip_axis: int | Sequence[int] | None = None, use_scipy: bool = False, num_threads: int | None = None, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]: """Return median-filtered phasor coordinates. By default, apply a NaN-aware median filter independently to the real and imaginary components of phasor coordinates once with a kernel size of 3 multiplied by the number of dimensions of the input arrays. Return the intensity unchanged. Parameters ---------- mean : array_like Intensity of phasor coordinates. real : array_like Real component of phasor coordinates to be filtered. imag : array_like Imaginary component of phasor coordinates to be filtered. repeat : int, optional Number of times to apply median filter. The default is 1. size : int, optional Size of median filter kernel. The default is 3. skip_axis : int or sequence of int, optional Axes in `mean` to exclude from filter. By default, all axes except harmonics are included. use_scipy : bool, optional Use :py:func:`scipy.ndimage.median_filter`. This function has undefined behavior if the input arrays contain `NaN` values but is faster when filtering more than 2 dimensions. See `issue #87 <https://github.com/phasorpy/phasorpy/issues/87>`_. num_threads : int, optional Number of OpenMP threads to use for parallelization. Applies to filtering in two dimensions when not using scipy. By default, multi-threading is disabled. If zero, up to half of logical CPUs are used. OpenMP may not be available on all platforms. **kwargs Optional arguments passed to :py:func:`scipy.ndimage.median_filter`. Returns ------- mean : ndarray Unchanged intensity of phasor coordinates. real : ndarray Filtered real component of phasor coordinates. imag : ndarray Filtered imaginary component of phasor coordinates. Raises ------ ValueError If `repeat` is less than 0. If `size` is less than 1. The array shapes of `mean`, `real`, and `imag` do not match. Examples -------- Apply three times a median filter with a kernel size of three: >>> mean, real, imag = phasor_filter_median( ... [[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... [[0.0, 0.0, 0.0], [0.5, 0.5, 0.5], [0.2, 0.2, 0.2]], ... [[0.3, 0.3, 0.3], [0.6, math.nan, 0.6], [0.4, 0.4, 0.4]], ... size=3, ... repeat=3, ... ) >>> mean array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> real array([[0, 0, 0], [0.2, 0.2, 0.2], [0.2, 0.2, 0.2]]) >>> imag array([[0.3, 0.3, 0.3], [0.4, nan, 0.4], [0.4, 0.4, 0.4]]) """ if repeat < 0: raise ValueError(f'{repeat=} < 0') if size < 1: raise ValueError(f'{size=} < 1') if size == 1: # no need to filter repeat = 0 mean = numpy.asarray(mean) if use_scipy or repeat == 0: # or using nD numpy filter real = numpy.asarray(real) elif isinstance(real, numpy.ndarray) and real.dtype == numpy.float32: real = real.copy() else: real = numpy.array(real, numpy.float64, copy=True) if use_scipy or repeat == 0: # or using nD numpy filter imag = numpy.asarray(imag) elif isinstance(imag, numpy.ndarray) and imag.dtype == numpy.float32: imag = imag.copy() else: imag = numpy.array(imag, numpy.float64, copy=True) if mean.shape != real.shape[-mean.ndim if mean.ndim else 1 :]: raise ValueError(f'{mean.shape=} != {real.shape=}') if real.shape != imag.shape: raise ValueError(f'{real.shape=} != {imag.shape=}') prepend_axis = mean.ndim + 1 == real.ndim _, axes = _parse_skip_axis(skip_axis, mean.ndim, prepend_axis) # in case mean is also filtered # if prepend_axis: # mean = numpy.expand_dims(mean, axis=0) # ... # if prepend_axis: # mean = numpy.asarray(mean[0]) if repeat == 0: # no need to call filter return mean, real, imag if use_scipy: # use scipy NaN-unaware fallback from scipy.ndimage import median_filter kwargs.pop('axes', None) for _ in range(repeat): real = median_filter(real, size=size, axes=axes, **kwargs) imag = median_filter(imag, size=size, axes=axes, **kwargs) return mean, numpy.asarray(real), numpy.asarray(imag) if len(axes) != 2: # n-dimensional median filter using numpy from numpy.lib.stride_tricks import sliding_window_view kernel_shape = tuple( size if i in axes else 1 for i in range(real.ndim) ) pad_width = [ (s // 2, s // 2) if s > 1 else (0, 0) for s in kernel_shape ] axis = tuple(range(-real.ndim, 0)) nan_mask = numpy.isnan(real) for _ in range(repeat): real = numpy.pad(real, pad_width, mode='edge') real = sliding_window_view(real, kernel_shape) real = numpy.nanmedian(real, axis=axis) real = numpy.where(nan_mask, numpy.nan, real) nan_mask = numpy.isnan(imag) for _ in range(repeat): imag = numpy.pad(imag, pad_width, mode='edge') imag = sliding_window_view(imag, kernel_shape) imag = numpy.nanmedian(imag, axis=axis) imag = numpy.where(nan_mask, numpy.nan, imag) return mean, real, imag # 2-dimensional median filter using optimized Cython implementation num_threads = number_threads(num_threads) buffer = numpy.empty( tuple(real.shape[axis] for axis in axes), dtype=real.dtype ) for index in numpy.ndindex( *[real.shape[ax] for ax in range(real.ndim) if ax not in axes] ): index_list: list[int | slice] = list(index) for ax in axes: index_list = index_list[:ax] + [slice(None)] + index_list[ax:] full_index = tuple(index_list) _median_filter_2d(real[full_index], buffer, size, repeat, num_threads) _median_filter_2d(imag[full_index], buffer, size, repeat, num_threads) return mean, real, imag
[docs] def phasor_threshold( mean: ArrayLike, real: ArrayLike, imag: ArrayLike, /, mean_min: ArrayLike | None = None, mean_max: ArrayLike | None = None, *, real_min: ArrayLike | None = None, real_max: ArrayLike | None = None, imag_min: ArrayLike | None = None, imag_max: ArrayLike | None = None, phase_min: ArrayLike | None = None, phase_max: ArrayLike | None = None, modulation_min: ArrayLike | None = None, modulation_max: ArrayLike | None = None, open_interval: bool = False, detect_harmonics: bool = True, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]: """Return phasor coordinates with values out of interval replaced by NaN. Interval thresholds can be set for mean intensity, real and imaginary coordinates, and phase and modulation. Phasor coordinates smaller than minimum thresholds or larger than maximum thresholds are replaced NaN. No threshold is applied by default. NaNs in `mean` or any `real` and `imag` harmonic are propagated to `mean` and all harmonics in `real` and `imag`. Parameters ---------- mean : array_like Intensity of phasor coordinates. real : array_like Real component of phasor coordinates. imag : array_like Imaginary component of phasor coordinates. mean_min : array_like, optional Lower threshold for mean intensity. mean_max : array_like, optional Upper threshold for mean intensity. real_min : array_like, optional Lower threshold for real coordinates. real_max : array_like, optional Upper threshold for real coordinates. imag_min : array_like, optional Lower threshold for imaginary coordinates. imag_max : array_like, optional Upper threshold for imaginary coordinates. phase_min : array_like, optional Lower threshold for phase angle. phase_max : array_like, optional Upper threshold for phase angle. modulation_min : array_like, optional Lower threshold for modulation. modulation_max : array_like, optional Upper threshold for modulation. open_interval : bool, optional If true, the interval is open, and the threshold values are not included in the interval. If false (default), the interval is closed, and the threshold values are included in the interval. detect_harmonics : bool, optional By default, detect presence of multiple harmonics from array shapes. If false, no harmonics are assumed to be present, and the function behaves like a numpy universal function. **kwargs Optional `arguments passed to numpy universal functions <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_. Returns ------- mean : ndarray Thresholded intensity of phasor coordinates. real : ndarray Thresholded real component of phasor coordinates. imag : ndarray Thresholded imaginary component of phasor coordinates. Examples -------- Set phasor coordinates to NaN if mean intensity is smaller than 1.1: >>> phasor_threshold([1, 2, 3], [0.1, 0.2, 0.3], [0.4, 0.5, 0.6], 1.1) (array([nan, 2, 3]), array([nan, 0.2, 0.3]), array([nan, 0.5, 0.6])) Set phasor coordinates to NaN if real component is smaller than 0.15 or larger than 0.25: >>> phasor_threshold( ... [1.0, 2.0, 3.0], ... [0.1, 0.2, 0.3], ... [0.4, 0.5, 0.6], ... real_min=0.15, ... real_max=0.25, ... ) (array([nan, 2, nan]), array([nan, 0.2, nan]), array([nan, 0.5, nan])) Apply NaNs to other input arrays: >>> phasor_threshold( ... [numpy.nan, 2, 3], [0.1, 0.2, 0.3], [0.4, 0.5, numpy.nan] ... ) (array([nan, 2, nan]), array([nan, 0.2, nan]), array([nan, 0.5, nan])) """ threshold_mean_only = None if mean_min is None: mean_min = numpy.nan else: threshold_mean_only = True if mean_max is None: mean_max = numpy.nan else: threshold_mean_only = True if real_min is None: real_min = numpy.nan else: threshold_mean_only = False if real_max is None: real_max = numpy.nan else: threshold_mean_only = False if imag_min is None: imag_min = numpy.nan else: threshold_mean_only = False if imag_max is None: imag_max = numpy.nan else: threshold_mean_only = False if phase_min is None: phase_min = numpy.nan else: threshold_mean_only = False if phase_max is None: phase_max = numpy.nan else: threshold_mean_only = False if modulation_min is None: modulation_min = numpy.nan else: threshold_mean_only = False if modulation_max is None: modulation_max = numpy.nan else: threshold_mean_only = False if detect_harmonics: mean = numpy.asarray(mean) real = numpy.asarray(real) imag = numpy.asarray(imag) shape = numpy.broadcast_shapes(mean.shape, real.shape, imag.shape) ndim = len(shape) has_harmonic_axis = ( # detect multi-harmonic in axis 0 mean.ndim + 1 == ndim and real.shape == shape and imag.shape == shape and mean.shape == shape[-mean.ndim if mean.ndim else 1 :] ) else: has_harmonic_axis = False if threshold_mean_only is None: mean, real, imag = _phasor_threshold_nan(mean, real, imag, **kwargs) elif threshold_mean_only: mean_func = ( _phasor_threshold_mean_open if open_interval else _phasor_threshold_mean_closed ) mean, real, imag = mean_func( mean, real, imag, mean_min, mean_max, **kwargs ) else: func = ( _phasor_threshold_open if open_interval else _phasor_threshold_closed ) mean, real, imag = func( mean, real, imag, mean_min, mean_max, real_min, real_max, imag_min, imag_max, phase_min, phase_max, modulation_min, modulation_max, **kwargs, ) mean = numpy.asarray(mean) real = numpy.asarray(real) imag = numpy.asarray(imag) if has_harmonic_axis and mean.ndim > 0: # propagate NaN to all dimensions mean = numpy.mean(mean, axis=0, keepdims=True) mask = numpy.where(numpy.isnan(mean), numpy.nan, 1.0) numpy.multiply(real, mask, out=real) numpy.multiply(imag, mask, out=imag) # remove harmonic dimension created by broadcasting mean = numpy.asarray(numpy.asarray(mean)[0]) return mean, real, imag
[docs] def phasor_center( mean: ArrayLike, real: ArrayLike, imag: ArrayLike, /, *, skip_axis: int | Sequence[int] | None = None, method: Literal['mean', 'median'] = 'mean', nan_safe: bool = True, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]: """Return center of phasor coordinates. Parameters ---------- mean : array_like Intensity of phasor coordinates. real : array_like Real component of phasor coordinates. imag : array_like Imaginary component of phasor coordinates. skip_axis : int or sequence of int, optional Axes in `mean` to excluded from center calculation. By default, all axes except harmonics are included. method : str, optional Method used for center calculation: - ``'mean'``: Arithmetic mean of phasor coordinates. - ``'median'``: Spatial median of phasor coordinates. nan_safe : bool, optional Ensure `method` is applied to same elements of input arrays. By default, distribute NaNs among input arrays before applying `method`. May be disabled if phasor coordinates were filtered by :py:func:`phasor_threshold`. **kwargs Optional arguments passed to :py:func:`numpy.nanmean` or :py:func:`numpy.nanmedian`. Returns ------- mean_center : ndarray Intensity center coordinates. real_center : ndarray Real center coordinates. imag_center : ndarray Imaginary center coordinates. Raises ------ ValueError If the specified method is not supported. If the shapes of `mean`, `real`, and `imag` do not match. Examples -------- Compute center coordinates with the default 'mean' method: >>> phasor_center( ... [2, 1, 2], [0.1, 0.2, 0.3], [0.4, 0.5, 0.6] ... ) # doctest: +NUMBER (1.67, 0.2, 0.5) Compute center coordinates with the 'median' method: >>> phasor_center( ... [1, 2, 3], [0.1, 0.2, 0.3], [0.4, 0.5, 0.6], method='median' ... ) (2.0, 0.2, 0.5) """ methods = { 'mean': _mean, 'median': _median, } if method not in methods: raise ValueError( f'Method not supported, supported methods are: ' f"{', '.join(methods)}" ) mean = numpy.asarray(mean) real = numpy.asarray(real) imag = numpy.asarray(imag) if real.shape != imag.shape: raise ValueError(f'{real.shape=} != {imag.shape=}') if mean.shape != real.shape[-mean.ndim if mean.ndim else 1 :]: raise ValueError(f'{mean.shape=} != {real.shape=}') prepend_axis = mean.ndim + 1 == real.ndim _, axis = _parse_skip_axis(skip_axis, mean.ndim, prepend_axis) if prepend_axis: mean = numpy.expand_dims(mean, axis=0) if nan_safe: mean, real, imag = phasor_threshold(mean, real, imag) mean, real, imag = methods[method](mean, real, imag, axis=axis, **kwargs) if prepend_axis: mean = numpy.asarray(mean[0]) return mean, real, imag
def _mean( mean: NDArray[Any], real: NDArray[Any], imag: NDArray[Any], /, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]: """Return mean center of phasor coordinates.""" real = numpy.nanmean(real * mean, **kwargs) imag = numpy.nanmean(imag * mean, **kwargs) mean = numpy.nanmean(mean, **kwargs) with numpy.errstate(divide='ignore', invalid='ignore'): real /= mean imag /= mean return mean, real, imag def _median( mean: NDArray[Any], real: NDArray[Any], imag: NDArray[Any], /, **kwargs: Any, ) -> tuple[NDArray[Any], NDArray[Any], NDArray[Any]]: """Return spatial median center of phasor coordinates.""" return ( numpy.nanmedian(mean, **kwargs), numpy.nanmedian(real, **kwargs), numpy.nanmedian(imag, **kwargs), ) def _parse_skip_axis( skip_axis: int | Sequence[int] | None, /, ndim: int, prepend_axis: bool = False, ) -> tuple[tuple[int, ...], tuple[int, ...]]: """Return axes to skip and not to skip. This helper function is used to validate and parse `skip_axis` parameters. Parameters ---------- skip_axis : int or sequence of int, optional Axes to skip. If None, no axes are skipped. ndim : int Dimensionality of array in which to skip axes. prepend_axis : bool, optional Prepend one dimension and include in `skip_axis`. Returns ------- skip_axis Ordered, positive values of `skip_axis`. other_axis Axes indices not included in `skip_axis`. Raises ------ IndexError If any `skip_axis` value is out of bounds of `ndim`. Examples -------- >>> _parse_skip_axis((1, -2), 5) ((1, 3), (0, 2, 4)) >>> _parse_skip_axis((1, -2), 5, True) ((0, 2, 4), (1, 3, 5)) """ if ndim < 0: raise ValueError(f'invalid {ndim=}') if skip_axis is None: if prepend_axis: return (0,), tuple(range(1, ndim + 1)) return (), tuple(range(ndim)) if not isinstance(skip_axis, Sequence): skip_axis = (skip_axis,) if any(i >= ndim or i < -ndim for i in skip_axis): raise IndexError(f'skip_axis={skip_axis} out of range for {ndim=}') skip_axis = sorted(int(i % ndim) for i in skip_axis) if prepend_axis: skip_axis = [0] + [i + 1 for i in skip_axis] ndim += 1 other_axis = tuple(i for i in range(ndim) if i not in skip_axis) return tuple(skip_axis), other_axis